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Resumo 

Informações precisas sobre o ponto de impacto (PI) de um foguete suborbital na superfície da 

Terra durante um lançamento são requisitos importantes para operações de segurança dos 

sítos de lançamento. Quatro estimadores diferentes, como filtro α-β, filtro Kalman padrão 

(FKP), filtro Kalman estendido (FKE) e filtro Kalman sem cheiro (FKU), são considerados 

para o problema de rastreamento suborbital de foguetes, cujos dados são usados 

especificamente para melhorar a precisão da predição do PI (PPI) desses veículos. Este artigo 

apresenta uma análise comparativa entre os resultados dos estimadores. Os dados de voo de 

foguetes são analisados no sentido de demonstrar as vantagens e desvantagens dos 

estimadores e determinar as limitações inerentes à previsão dos efeitos aerodinâmicos 

encontrados em determinadas situações de voo. Discutimos o modelo matemático apropriado 

de um filtro capaz de executar o algoritmo em tempo real para as estimativas da posição e 
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velocidade do alvo. Este trabalho utiliza dados reais de um sensor de radar para avaliar os 

algoritmos de rastreamento. Inserimos o resultado do filtro no modelo matemático 

desenvolvido para prever o PI do foguete na superfície da Terra. O principal objetivo deste 

estudo é avaliar o desempenho de quatro estimadores diferentes, quando aplicados 

especificamente na melhoria da PPI de foguetes suborbitais. É demonstrado que o FKU 

supera todos os outros algoritmos de rastreamento em termos de precisão e robustez da 

estimativa do PI. 

Palavras-chave: Estimativa de estado; Algoritmo de rastreamento; Processamento digital de 

sinais; Previsão de pontos de impacto. 

 

Abstract 

Accurate information about the impact point (IP) of a suborbital rocket on Earth’s surface 

during a launch is an important requirement for range safety operations. Four different 

estimators, i.e., the α-β filter, standard Kalman filter (SKF), extended Kalman filter (EKF), 

and unscented Kalman filter (UKF), are considered for the suborbital rocket tracking problem, 

whose data are used specifically for improving the accuracy of the IP prediction (IPP) of these 

vehicles. This paper presents a comparative analysis between the results of the estimators. 

Rocket flight data are discussed to demonstrate the advantages and disadvantages of the 

estimators and to determine the inherent limitations in predicting the aerodynamic effects 

found in certain flight situations. We discuss the appropriate mathematical model of a filter 

capable of running the real-time algorithm for the estimation of target position and velocity. 

This work uses actual data from a radar sensor to evaluate the tracking algorithms. We insert 

the filter result into the mathematical model developed to predict the rocket IP on Earth's 

surface. The main goal of this study is to evaluate the performance of four different estimators 

when specifically applied for the improvement of the IPP of suborbital rockets. It is 

demonstrated that the UKF outperforms all other tracking algorithms in terms of the accuracy 

and robustness of IP estimation. 

Keywords: State estimation; Tracking algorithm; Digital signal processing; Impact point 

prediction. 

 

Resumen 

La información precisa sobre el punto de impacto (PI) de un cohete suborbital en la superficie 

de la Tierra durante un lanzamiento es un requisito importante para las operaciones de 

seguridad del sitio de lanzamiento. Se consideran cuatro estimadores diferentes, como el filtro 
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α-β, el filtro Kalman estándar (FKP), el filtro Kalman extendido (FKE) y el filtro Kalman 

inodoro (FKU) para el problema de seguimiento de cohetes suborbitales, cuyos datos se 

utilizan específicamente para mejorar la precisión de predicción de PI (PPI) de estos 

vehículos. Este artículo presenta un análisis comparativo entre los resultados de los 

estimadores. Los datos del vuelo del cohete se analizan para demostrar las ventajas y 

desventajas de los estimadores y para determinar las limitaciones inherentes a la predicción de 

los efectos aerodinámicos encontrados en ciertas situaciones de vuelo. Discutimos el modelo 

matemático apropiado de un filtro capaz de ejecutar el algoritmo en tiempo real para estimar 

la posición y la velocidad del objetivo. Este trabajo utiliza datos reales de un sensor de radar 

para evaluar los algoritmos de seguimiento. Insertamos el resultado del filtro en el modelo 

matemático desarrollado para predecir el PI del cohete en la superficie de la Tierra. El 

objetivo principal de este estudio es evaluar el rendimiento de cuatro estimadores diferentes, 

cuando se aplica específicamente para mejorar el PPI del cohete suborbital. Se muestra que 

FKU supera a todos los demás algoritmos de seguimiento en términos de precisión y solidez 

de la estimación de PI. 

Palabras clave: Estimación del estado; Algoritmo de seguimiento; Procesamiento de señales 

digitales; Predicción del punto de impacto. 

 

1. Introduction 

 

Numerous suborbital rockets are launched with the goal of performing scientific and 

technological experiments. These rockets carry scientific payloads into space for conducting 

research in the microgravity environment. Consequently, these payloads are recovered as they 

fall on Earth's surface. The rescue teams that participate in the recovery of these payloads 

require information on latitude, longitude, and target impact time (Markgraf, Montenbruck, 

Turner & Viertotak, 2003). There are several methods of locating and rescuing the payload of 

a space vehicle or a high dynamic vehicle (Montenbruck, Markgraf, Jung, Bull & Engler, 

2002). In this work, we utilize a rocket tracking system with a radar sensor. The main 

advantage of the radar sensor in sounding rocket tracking is that it provides superior 

penetration capability in any weather condition. 

The main goal of this study is to evaluate the performance of four different position 

and velocity estimators through comparative analysis and to determine their advantages and 

disadvantages when specifically applied for the improvement of the IPP of suborbital rockets. 

The α-β filter, SKF, EKF, and UKF estimators are the core of the indirect measurement 
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system, and they are based on the rocket state-space model. IPP depends on the accuracy and 

stability of a filter, whose results are the estimated position and velocity of a target. 

The problem of the state estimation of the position and velocity of space vehicles has 

been the object of study of researchers for theoretical, practical, and economical reasons 

(Ramachandra, 2018; Simon, 2006). These studies aim to develop and apply more robust 

algorithms for real-world problems. Considering such requirements, the α-β filter (Kosuge, 

Ito, Okada & Mano, 2002; Ng, Yeong, Su & Wong, 2012; Tenne & Singh, 2002; Yadav, 

Naik, Ananthasayanam, Gaur & Singh, 2012) and SKF (Abreu, Neto & Oliveira, 2011; Chui 

& Chen, 2008; Kalman, 1960; Welch & Bishop, 2006) were the most widely used algorithms. 

However, the α-β filter and SKF can be optimally applied only to problems that can be 

represented by linear systems. The α-β filter is widely used for the tracking of sounding 

rockets. Currently, it is employed at Brazilian, Swedish, and Norwegian launch sites for the 

filtering of radar signals in tracking rockets (Garcia, Yamanaka, Barbosa, Bizarria, Jung & 

Scheuerpflug, 2011). Despite its wide use, the α-β filter has the following limitations: It is 

suboptimal, and constant gains are computed a priori and provided as input to the tracking 

algorithm (Yadav, Naik, Ananthasayanam, Gaur & Singh, 2012). Owing to the lack of 

recursion, this filter can cause aberrant results in the cases of abnormality in flight (Abreu, 

Neto & Oliveira, 2011). Other techniques have been studied and developed to overcome these 

limitations; for example, the EKF (Einicke & White, 1999; Farina, Ristic & Benvenuti, 2002) 

and UKF (Biswas, Southwell & Dempster, 2018; Garcia, Pardal, Kuga & Zanardi, 2019; 

Julier & Uhlmann, 2004; Scardua & da Cruz, 2016; Wan & Van Der Merwe, 2000).  

The EKF is the most commonly used nonlinear filtering algorithm for position and 

velocity estimation in real time. However, when the filter is subjected to poor conditions, the 

linearization of a system may not be efficient, and this may lead to low accuracy estimation 

and even filter divergence. The UKF algorithm was developed to eliminate the linearization 

required by the EKF (Julier & Uhlmann, 2004). The main advantages of the UKF over EKF 

are that the expected error of the UKF is smaller compared to the EKF and the UKF does not 

require the derivation of Jacobian matrices. The UKF exhibited more accurate and robust 

performance compared to the EKF under inaccurate initial conditions (Garcia, Kuga & 

Zanardi, 2016). The UKF uses a set of points that are selected deterministically, which are 

referred to as ‘‘sigma points,” to capture a probability distribution and generalizes to a 

nonlinear system without the burdensome analytic derivation required in the EKF (Julier & 

Uhlmann, 2004). 
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This work aims to analyze the behavior of the α-β, SKF, EKF, and UKF estimators 

when applied to actual position data obtained from rocket tracking to improve IPP. At present 

and to the best of our knowledge, this is the first time that the comparative analysis among 

these four estimators has been applied to the problem of position and velocity estimation to 

predict the IP using actual data. Analyzing the behavior of algorithms when they are applied 

to actual data poses practical difficulties such as the tuning and learning of filters. 

The contribution of this paper is the performance analysis of the UKF nonlinear 

estimator applied to the problem of position and velocity estimation to improve IPP for actual 

data measured by a radar sensor. The data refer to the tracking of suborbital rockets launched 

at the Alcântara Launch Center. 

The rest of this paper is structured as follows: Section 2 describes the methods 

involved in the rocket tracking process and real-time IPP modeling. Section 3 describes the 

modeling of the α-β, SKF, EKF, and UKF estimators. Section 4 describes the results obtained 

in the study through the comparative analysis of the four different estimators and IPP model. 

Section 5 summarizes our work. 

 

2. Target tracking impact point 

 

2.1. Rocket tracking process 

 

The structure established in this work for the comparative analysis of the four tracking 

algorithms used for rocket tracking IPP is shown in Fig. 1.  

 

Figure.1: Steps of estimation and IPP of rocket on Earth's surface. 

 
                                      Source: Authors. 

 

The filtering process is used to estimate the position ( ˆ
kx ), and velocity ( ˆ

kv ), of the 

rocket during tracking. After filtering, the estimated data are sent to the input of the IPP 
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calculation algorithm, which generates and plots the results in latitude ( k ), longitude ( k ), 

and impact-time ( kt ) coordinates. 

Initially, raw position data are measured by the radar sensor in spherical coordinates, 

 [ , , ]Td   , as follows: 

2 2 2d x y z    ,       (1) 

arctan
y

x


 
  

 
 ,       (2) 

2 2

arctan
x y

z


 
 
 
 

       (3) 

These coordinates are transformed into Cartesian coordinates  [x, y, ]Tz , given by 

   cos sinx d    ,      (4) 

   cos cosy d          (5) 

sinz d           (6) 

Consequently, signals are filtered and presented as the estimated position vector 

ˆ ˆ ˆ ˆ, ,
T

kx x y z    , and estimated velocity vector ˆ ˆ ˆ ˆ, ,
T

k x y zv v v v    . The estimated position and 

velocity signals available at the output of the tracking algorithm are used to calculate the IP 

on Earth's surface (Markgraf, Montenbruck, Turner & Viertotak, 2003; Jung & Hwang, 

2013). 

 

2.2. Impact point problem 

 

This section presents the real-time computation performed using the rocket's IPP 

model. The trajectory of the rocket is ballistic owing to a stop in propulsion. The input data of 

the IPP algorithm are the Cartesian coordinates of the position  ˆ ˆ ˆ, ,x y z  and the rocket 

velocity  ˆ ˆ ˆ
x y zv v v  within terrestrial geographical reference, as shown in Fig. 1. The output 

data of this module are the geocentric coordinates, latitude ( k ), and longitude ( k ) of the IP 

and the flight time ( kt ) until impact. The complete IPP process consists of two functional 

blocks in a broad sense, one for the filtering of radar signals and the other for predicting the 

IP position.  
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The problem of IPP involves the use of digital filters to estimate rocket position and 

velocity to calculate latitude, longitude, and impact time parameters. The solution to this 

problem considers the development of system dynamic models that are used by a filter and 

the computation of the IP (Wang & Chang, 2013). Thus, the IPP problem is characterized as 

an estimation problem during flight from the point of view of the laws of classical mechanics, 

and it considers the position signals captured by the radar sensor as input (Jung & Hwang, 

2013). 

The problem is formulated using stochastic filtering techniques. The IP reflects the 

noise level of a filtered signal and the reaction time of a filter in the transitions between 

propelled (powered ascent) and ballistic phases. The quality of the prediction and evolution of 

the IP depend on the accuracy, stability, noise level, and convergence velocity of a filter. The 

constraints in using the technique for filtering multistage rocket tracking data and the 

prediction of the evolution of the IP obey filter performance limits (Bozic, 1983). 

One of the main purposes of flight safety during rocket tracking is the ability to track 

the trajectory of the rocket and adjust the location of the IP with respect to Earth's surface 

considering the propelled phase (powered ascent) at every moment. Therefore, gains should 

be adjusted according to time. 

 

2.3. Impact point model 

 

The model for IPP is discussed in this section. Through the basic equations and the 

behavior of an IP curve, we can observe the noise level of a filtered signal and the response 

time of a filter for the following situations: between the stages of burning end and the start of 

the next burning; filtering in the ballistic phase; between the moments of the loss and 

reacquisition of a target. 

The model considers the following assumptions for determining the IP, as shown in 

Fig. 2. The trajectory of the rocket is purely ballistic, i.e., elliptical according to Kepler's laws; 

The movement is calculated in relation to the center of gravity of the vehicle in flight; The 

terrestrial relief and the friction in the atmosphere are not considered; Earth is considered 

spherical; The IP is calculated at zero altitude. 

 

Figure.2: Estimated vectors of position and velocity on an elliptical trajectory of IPP. 
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          Source: Authors. 

 

2.4. Latitude and longitude calculation 

 

Using the reference system that considers the center of Earth as the origin, the z axis 

is Earth's rotation axis, the x axis is given by the intersection of the plane defined by the 

Greenwich meridian with the plane of the equator, and the y axis is normal to the plane 

defined by the x  and z axes. Once the position ˆ
k kOM x , and velocity ˆ

kv , vectors are 

known and obtained from the filtering process, which is described in Section 3, the 

computation of the position vector of the IP, 
kt

OM , consists of determining coefficients kF  

and kG , as presented in Fig. 2. 

k kt k k tOM ON N M  .     (7) 

Equation (7) can also be written as 

ˆ ˆ
kt k k k kOM F x G v  ,      (8) 

Where ˆ
kx  and ˆ

kv  are known. This is sufficient for determining kF  and kG , where kF  is the 

projection of equation (8) on vector ˆ
kx  and kG  is the projection of equation (8) on 

perpendicular vector ˆ
kx . kF  and kG  are given by 

cos(E E ) cos(E )

1 cos(E )

kt k k

k

k

e
F

e

 



      (9) 

and 

3 2

[sin(E E ) (sin(E E )],
k kk t k t k

a
G e


        (10) 
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where a  is the semi-major axis of the ellipse,  is the standard gravitational parameter, e  is 

the eccentricity of the ellipse, tE  is the eccentric anomaly at time t, and 
kt

E  is the eccentric 

anomaly at the time of impact. 

In sequence, the successive projections of equation (8) are calculated over the line 

containing the impact vector ˆ
kx , and its perpendicular. In Galilean geocentric reference, the IP 

vector is given by 

ˆ ˆ
k kt k k k k tOM F x G v d        (11) 

where kx , ky , and kz  are the IP coordinates, as shown in Fig. 3. Therefore, the latitude and 

longitude of this IP are given by 

    
2 2

arctan k

k

k k

z

x y


 
 
  

     (12)  

and 

    arctan k

k

k

y

x


 
  

 
      (13) 

 

Figure.3: Projection of the impact point vector ktOM , on kx , ky , and kz  coordinates. 

 

                                   Source: Authors. 

 

3. Experimental procedure (Analyzed estimators) 

 

This section presents the four different tracking algorithms. We describe the    

filter and SKF in the linear representation and the EKF and UKF in the nonlinear 

representation (AminiOmam, Torkamani-Azar & Ghorashi, 2017). The data obtained through 
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these estimators are used as the input to the IPP algorithm. IPP depends on the accuracy and 

stability of the filter that contributes to the filtered signals of the estimated position and 

velocity. 

 

3.1.    Filter 

 

The    filter is a constant gain estimator used specifically in tracking systems when 

position measurements are available in Cartesian coordinates and when the state vector 

consists of position and velocity. The    filter estimates the next step of the states of a 

system according to the typical equations of kinematics and corrects these estimations through 

the multiplication of positions estimation residuals with constant gains. The    filter 

predicts the position and velocity that describe the dynamics of rocket flight (Kosuge, Ito, 

Okada & Mano, 2002; Ng, Yeong, Su & Wong, 2012; Tenne & Singh, 2002; Wu, Chang & 

Chu, 2011). 

To establish a radar signal processing scheme (Greco, Abramovich, Ovarlez & Yang, 

2015), it is necessary to introduce the predicted position, predicted velocity, estimated 

position, and estimated velocity equations, which are respectively given by 

(k 1) (k) T ( )p s sx x k   ,      (14) 

(k 1) (k)p s   ,      (15) 

ˆ [ ], 0
k k ks p k px x x x     ,    (16) 

ˆ ( )[ ], 0
k k ks p k pT x x       .   (17) 

 

3.2. Standard Kalman filter 

 

The SKF is essentially a set of mathematical equations that implement an optimal predictor-

corrector type estimator to minimize estimated error covariance when certain conditions are 

met (Welch & Bishop, 2006). The SKF describes a recursive solution for data estimation, and 

it is applied optimally only in problems that can be represented by a discrete linear system. 

Owing to efficient recursive performance and advances in computing, the SKF has a wide 

range of applications, particularly in space, such as rocket trajectory analysis (Chui & Chen, 

2008; Kalman, 1960; Bozic, 1983). 
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The state-space model implemented from the process and measurement is given by 

transition and observation equations. 

1k k kx Ax w   ,      (18)  

k k ky Cx   .      (19) 

The SKF equations are divided into two groups, i.e., ``time update" and ``measurement 

update" equations. The time update (prediction) equations are as follows: 

/ 1 1/ 1
ˆ ˆ

k k k kx Ax   ,      (20) 

/ 1 1/ 1

T

k k k k kP AP A Q    ,     (21) 

/ 1
ˆ ˆ

k k ky Cx  .       (22) 

The measurement update (correction) equations are as follows: 

1

/ 1 / 1[C R ]T T

k k k k k kK P C P C 

   ,    (23) 

/ / 1
ˆ ˆ ˆ[y y ]k k k k k k kx x K   ,     (24) 

/ / 1 / 1k k k k k k kP P K CP   .     (25) 

 

3.3. Extended Kalman filter 

 

The EKF is widely used for the state estimation of nonlinear systems. One of the 

possible approaches is to linearize the system under investigation around its current state and 

force the filter to use the linearized version of the system as a model. Specifically, in this 

work, the EKF describes a recursive solution for the state estimation problems of a discrete 

nonlinear system.  

Given an initial value, one can predict and adjust the parameters of a system model 

through each new measurement to yield the estimated error on each update. Owing to 

recursive performance and progress in computing, the EKF has a wide range of applications, 

particularly in space, such as rocket trajectory analysis (Einicke & White, 1999). 

The state-space model implemented from the process and measurement is given by 

transition and observation equations. 

1k k kx Ax w   ,      (26)  

( )k k ky h x   ,      (27) 
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Where kx  is the tracking state vector, which indicates position  , ,
T

x y z  and velocity 

, ,
T

x y z   
  , and ky is the vector of spherical coordinate measurements. h(.) is the 

Cartesian-to-spherical coordinate transformation. Vector ky  represents the position 

measurement by the radar sensor at coordinates  , ,d   . The measurement of the 

spherical coordinates of the position of a target related to the state of the Cartesian 

coordinates is given by 

2 2 2

1

1

tan

tan

k

k

k

k k k

x

k

k y

k

z

k k

k

x y z
d

y
y

x

x y

z



 

 





 
 
  

   
     

       
              

  
  

     (28) 

The EKF equations are divided into two groups, i.e., “time update" and “measurement 

update" equations. 

The time update equations (prediction) are given by 

/ 1 1/ 1
ˆ ˆ

k k k kx Ax   ,      (29) 

/ 1 1/ 1

T

k k k k kP AP A Q    ,     (30) 

/ 1
ˆ ˆ( )k k ky h x  .      (31) 

The measurement update equations (correction) are given by 

1

/ 1 / 1H [H R ]T T

k k k k k k k k kK P P H 

   ,    (32) 

/ / 1
ˆ ˆ ˆ[y y ]k k k k k k kx x K   ,     (33) 

/ / 1 / 1k k k k k k k kP P K H P   ,     (34) 

where 

/ 1

/ 1 / 1 / 1

1 1 1

/ 1 / 1

2 2ˆ

2 2

/ 1 / 1 / 1 / 1 / 1 / 1

3 3 3

ˆ ˆ ˆ
0 0 0

ˆ ˆ( )
0 0 0 0

ˆ ˆ ˆ ˆˆ ˆ2 2
0 0 0

k k

k k k k k k

k k k k k

k

k x

k k k k k k k k k k k k

x y z

h h h

h x y x
H

x h h

x z y z x y

h h h



  

 

     

 
 
 
  
   

   
 

 
  

   (35) 
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is valid only when denominators 1h , 2h , and, 3h  of equation (35) are given by: 

2 2 2

1 / 1 / 1 / 1
ˆ ˆ ˆ

k k k k k kh x y z     ; 
2 2

2 / 1 / 1
ˆ ˆ

k k k kh x y   ; 
2 2 2

3 / 1 / 1 / 1
ˆ ˆ ˆ

k k k k k kh x y z     . 

The deployment of this algorithm is based on an optimality criterion, such as the 

minimum mean square error, to estimate the state vector. 

 

3.4. Unscented Kalman filter 

 

A method of reducing the linearization errors in the EKF is to consider the UKF. The UKF 

propagates the Gaussian random variables that represent the state through dynamic systems 

using a deterministic sampling approach. The state distribution is represented using a minimal 

set of carefully selected sample points. These sample points completely capture the true mean 

and covariance of the state, and when propagated through the true nonlinear system, capture 

the posterior mean and covariance accurately to the second order for any nonlinearity 

(Biswas, Southwell & Dempster, 2018; Garcia, Pardal, Kuga & Zanardi, 2019; Julier & 

Uhlmann, 2004; Wan & Van Der Merwe, 2000). 

The UKF is an algorithm capable of performing state estimation in systems with 

nonlinearity without linearizing the nonlinear functions present in the model. This estimation 

becomes possible owing to a transformation technique that generates a set of vectors that, 

when undergoing a nonlinear transformation, remain with the same mean and covariance as 

those of the random variables before the transformation. This technique is known as 

unscented transformation. 

This filter has an advantage when compared to the EKF because the unscented 

transformation describes the nonlinear system better compared to linearization. Hence, this 

filter converges to the right solution more rapidly. Another advantage of the UKF is that the 

calculation of the first-order Jacobian, which can be a challenging task, is not necessary. The 

UKF is typically more accurate than the EKF because it is able to capture a higher order of 

nonlinearities (Gadsden, Dunne, Habibi & Kirubarajan, 2009). However, similar to the EKF, 

the UKF may become unstable and results may be biased. 

The UKF is a sigma point Kalman filter that derives the location of sigma points and their 

corresponding weights according to the following rationale: The sigma points should be 

selected so that they capture the most important statistical properties of the prior random 

variable (Van Der Merwe, 2004; Wan, 2006). 
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The state-space model implemented from the process and measurement is given by 

transition and observation equations. 

1 1( )k k kx f x w   ,      (36)  

( )k k ky h x   ,      (37) 

where kx  is the state vector and ky  is the observation vector. Process noise and observation 

noise are represented by kw  and k , respectively, and they are uncorrelated and Gaussian 

random processes. 

The set of equations that define the UKF algorithm are described below. 

Time update equations (Prediction): 

a) Generation of sigma points, ( )

1 ( 0,1, ,2n)i

k i   , and the associated weights: 

(0)

1 1

( )

1 1 1

( )

1 1 1

ˆ , 0

ˆ ( ( )P ) , 1, ,

ˆ ( ( )P ) , 1,

k k

i

k k k i

i

k k k i n

x i

x n i n

x

к

кn i n+1, ,2n







 

  

   

 

   

   

   (38) 

where к is a scaling parameter, n is the dimension of the state, 1( ( ) P )kкn   is the ith row 

or column of the matrix square root of 1( ) Pkкn  , and iW  is the weight that is associated with 

the ith point. 

b) Propagation of sigma points: 

The propagation of each vector ( )i , through nonlinear functions, f, is given by 

( ) ( )

/ 1 1( ) ( 0,1, ,2 )i i

k k kf i n            

c) Estimation of the propagated state and covariance matrix or instant k: 

The predicted mean is calculated as 

2
(0) ( )

/ 1 / 1 / 1

1

1
ˆ

2( )

n
i

k k k k k k

i к
x

n n

к

к
   



 
 

        

The predicted covariance is calculated as 

2
(0) (0) (0) (0)

/ 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 1

1 )

1
ˆ ˆ ˆ ˆ

2(

n
T T

k k k k k k k k k k k k k k k k k k k

i

P x x x x Q
n n

к

к к
            



                     
   (39) 

Measurement update equations (Correction) 

Similar to time update, a set of 2n+1 sigma points  ( )

1, 0,1, , 2i

k i n    are derived from 

the updated state and covariance matrices, where n is the dimension of the state. The sigma 

points are propagated through observation function h as follows: 

a) Evaluation of sigma points,  ( ) , 0, , 2i

k i n  : 
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(0)

/ 1

( )

/ 1 / 1

( )

/ 1 / 1

ˆ

ˆ ( ( )P ) , 1, ,

ˆ ( ( )P ) , 1,

k k k

i

k k k k k i

i

k k k k k i n

x

x n - i n

x n+ i n+1

к

,к , 2n









 

  



  

  

   (40) 

b) Propagation of sigma points through the measurement model: 

( ) ( )( ), 0, ,2i i

k ky h i n         (41) 

c) Estimation of the predicted measurement, innovation covariance matrix, and cross-

covariance matrix: 

2
(0) ( )

1

1
ˆ

2( )

n
i

k k k

i

к
y y

n nк к
y



 
 

       (42) 

2
(0) (0) (0) (0)

1

1
ˆ ˆ ˆ ˆ

2( )k k

n
T T

y y k k k k k k k k k

i

P y y y y y y y y
к

к к
R

n n

                     
   (43) 

2
(0) (0) (i) (i)

/ 1 / 1

1

1
ˆ

2( )
ˆ ˆ

k k

n
T T

x y k k k k k k k k k k

i

к

к
P x y y x y y

n кn
  



                    
   (44) 

d) Estimation of the UKF gain, update state, and covariance matrix: 

1

k k k kk x y y yK P P ,      (45) 

/ / 1 / 1
ˆ ˆ ˆ(y y )k k k k k k k kx x K    ,      (46) 

/ / 1 k k

T

k k k k k y y kP P K P K              (47) 

 

4. Results and comparative analysis 

 

In this section, we present the comparative results of the performance of the α-β, SKF, 

EKF, and UKF estimators in the tracking of two suborbital rockets and consequently the 

effect of these results on the IPP problem. The actual data measured by the radar sensor 

during rocket tracking are considered. Two databases are used, one single-stage rocket (1-Stg 

Rocket) and one two-stage rocket (2-Stg Rocket) with a parachute (Garcia, Yamanaka, 

Barbosa, Bizarria, Jung & Scheuerpflug, 2011). The algorithms are initialized by selecting the 

parameters that best adjust the behavior of the estimators with respect to their convergence. 

The parameters selected to initialize the algorithms are α=0.34, β=0.07, Q0=Diag(0.05 0.05 

0.05 0.05 0.05 0.05), R0=Diag(10 10 10),  0
ˆ 0 0 0 0 0 0

T
x  , T=0.05 s, P0=10 x I6x6, 

λ0=-2.3155 (º), and φ0=-44.29 (º). 

Tables 1 and 2 show the mean squared error (MSE), which is also referred to as the 

estimated error covariance, and the root MSE (RMSE), which is also referred to as the 
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estimated error standard deviation, of the α-β, SKF, EKF, and UKF estimators. Tables 1 and 2 

show that the results obtained by the nonlinear algorithms (EKF and UKF) are better 

compared to the linear algorithms (α-β and SKF) and that the UKF shows the lowest mean 

and estimated error standard deviation on the three axes. Figures 4 and 5 show the estimated 

velocity on the three axes for the α-β, SKF, EKF, and UKF estimators. 

 

Table 1: Mean squared error ± standard deviation of the residuals on the X, Y, Z axes (1-Stg Rocket). 

 X-Axis (m) Y-Axis (m) Z-Axis (m) 

α-β 3861 ± 61.91 2899 ± 54.66 5863 ± 81.69 

SKF 4730 ± 76.84 3450 ± 66.36 6489 ± 96.41 

EKF 41.31 ± 6.42 0.64 ± 1.02 0.9684 ± 0.98 

UKF 29.93 ± 5.47 0.001 ± 0.03 0.0002 ± 0.05 

   Source: Research data by Authors. 

 

Table 2: Mean squared error ± standard deviation of the residuals on the X, Y, Z axes (2-Stg Rocket). 

 X-Axis (m) Y-Axis (m) Z-Axis (m) 

α-β 163.37 ± 12.78 49.540 ± 07.03 1574.90 ± 39.60 

SKF 752.85 ± 27.43 285.70 ± 16.90 1486.10 ± 121.90 

EKF 186.06 ± 13.64 0.0060 ± 0.07 0.05000 ± 0.23 

UKF 32.83 ± 5.73 0.00017 ± 0.0013 0.00030 ± 0.006 

   Source: Research data by Authors. 

 

Figure.4: (1-Stg Rocket) Velocity estimated by α-β, SKF, EKF, and UKF 

 

                         Source: MATLAB Implementation by Authors. 
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Figure.5: (2-Stg Rocket) Velocity estimated by α-β, SKF, EKF, and UKF 

 

             Source: MATLAB Implementation by Authors. 

 

The results show that the UKF estimator exhibits the best performance in the powered 

ascent (ranging from 0-10 s for the 1-stg-rocket and 0-30 s for the 2-stg-rocket) and ballistic 

phases of flight.  

Figures 6 to 9 show the estimated error and standard deviation on the three axes for the 

α-β, SKF, EKF, and UKF estimators. 

 

Figure.6: (1-Stg Rocket) Error estimated by α-β, SKF, EKF, and UKF. 

 

                       Source: MATLAB Implementation by Authors. 
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It can be observed that the estimation performances of the α-β and SKF are extremely 

similar in this application. Both have slow convergence and considerably large estimation 

error reaching 400 m, as seen on the X-axis in Fig. 6. 

 

Figure.7. (2-Stg Rocket) Error estimated by α-β, SKF, EKF, and UKF. 

 

                        Source: MATLAB Implementation by Authors. 

 

In addition, the EKF shows the largest estimation error during the powered ascent 

(ranging from 0-10 s for the 1-stg-rocket and 0-30 s for the 2-stg-rocket), only on the X-axis. 

At this stage, the EKF is more difficult to tune. For the remainder of the tracking, its 

performance is more accurate compared to the α-β filter and SKF and close to the UKF. This 

implies that the EKF converges to an acceptable estimate, but with instability and poor 

robustness. It is known that in certain situations, the problems of imprecision and divergence 

can occur as a consequence of the linearization of the nonlinear functions present in the 

algorithm. 

The UKF shows smaller estimated error and standard deviation in the powered ascent 

(ranging from 0-10 s for the 1-stg-rocket and 0-30 s for the 2-stg-rocket, as shown in Figs. 6 

to 9 of the flight. Thus, the UKF is more effective than the other estimators. The UKF exhibits 

the lowest estimated error and standard deviation in the parachute activation (ranging from 

300--350 s for the 2-stg-rocket, as shown in Figs. 8 and 9. Hence, the UKF is more effective 

than the other estimators during changes in flight behavior. 
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Figure.8: (1-Stg Rocket) Standard deviation obtained by α-β, SKF, EKF, and UKF 

 

                       Source: MATLAB Implementation by Authors 

 

Figure.9: (2-Stg Rocket) Standard deviation obtained by α-β, SKF, EKF, and UKF. 

 

                         Source: MATLAB Implementation by Authors. 

 

As discussed in Section 1, the contribution of this study is based on the results 

obtained with the UKF estimator, which proved to be the most optimistic, accurate, and stable 

in all flight phases. Tables 1 and 2 and Figs. 6 to 9 show that the UKF tracking algorithm 

reduces the measurement error of the radar sensor by 80% with respect to the EKF and 95% 
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with respect to the α-β and SKF. Table 3 shows the predicted IP (PIP) of the four tracking 

algorithms previously analyzed based on longitude (φk), latitude (λk), and impact time (tk) 

coordinates for single-stage and two-stage rocket flight. 

 

Table 3. PIP based on longitude (φk), latitude (λk), and flight time until impact (tk). 

 1-Stg Rocket 2-Stg Rocket 

 (º )k  (º )k  (s)kt  (º )k  (º )k  (s)kt  

α-β -43:50  -1:46 100:0 -43:00 -1:13 117:6 

SKF -43.51 -1.47 99.3 -43.01 -1.12 117.6 

EKF -43.51 -1.48 104.4 -43.00 -1.12 118.0 

UKF -43.52 -1.49 102.5 -43.01 -1.12 117.4 

   Source: Research data by Authors. 

 

Figures 10 to 12 show the IPP and PIP of the four tracking algorithms for single-stage 

and two-stage rocket flight.  

 

Figure.10: (1-Stg Rocket) IPP and PIP by α-β, SKF, EKF, and UKF estimators. 

 

                      Source: MATLAB Implementation by Authors. 
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Figure.11: (1-Stg Rocket) IPP and PIP by α-β, SKF, EKF, and UKF (3D view) 

 

                       Source: MATLAB Implementation by Authors. 

 

Figure.12: (2-Stg Rocket) IPP and PIP by α-β, SKF, EKF, and UKF (3D view) 

 

                        Source: MATLAB Implementation by Authors. 
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5. Conclusions 

 

This study compared and evaluated the behavior of four different estimators used to 

improve rocket IPP, i.e., the α-β filter, SKF, EKF, and UKF. All four tracking algorithms, 

when designed and tuned appropriately, were able to track targets with a certain degree of 

accuracy. The advantages and disadvantages of all tracking algorithms were determined. The 

final results of this study used the actual data of rocket tracking measured using radar sensors. 

All four estimators appeared to be statistically efficient from the point of view of accuracy. 

The UKF outperformed all other tracking algorithms. 

The estimation error and standard deviation of the α-β, SKF, EKF, and UKF 

estimators demonstrated that the best performance and, consequently, the main contribution 

of this work was obtained through the UKF tracking algorithm. This algorithm provided 

accurate performance and delineated under transient conditions, thereby contributing to the 

best IPP of suborbital rockets using a radar sensor. 
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