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Resumo 

Uma heurística para sintonia e análise de convergência do algoritmo de aprendizado por 

reforço para controle com realimentação de saída com apenas dados de entrada / saída, 

gerados por um modelo, são apresentados. Para promover a análise de convergência, é 

necessário realizar o ajuste dos parâmetros nos algoritmos utilizados para a geração de dados, 

e iterativamente resolver o problema de controle. É proposta uma heurística para ajustar os 

parâmetros do gerador de dados criando superfícies para auxiliar no processo de análise de 

convergência e robustez da metodologia de controle ótimo on-line. O algoritmo testado é o 

regulador quadrático linear discreto (DLQR) com realimentação de saída, baseado em 

algoritmos de aprendizado por reforço através do aprendizado por diferença temporal no 

esquema de iteração de política para determinar a política ideal usando apenas dados de 

entrada / saída. No algoritmo de iteração de política, o RLS (Mínimos Quadrados Recursivos) 

é usado para estimar parâmetros on-line associados ao DLQR com realimentação de saída. 

Após a aplicação das heurísticas propostas para o ajuste, a influência dos parâmetros pôde ser 

vista claramente, e a análise de convergência e facilitada. 
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Abstract 

A heuristic for tuning and convergence analysis of the reinforcement learning algorithm for 

control with output feedback with only input / output data generated by a model is presented. 

To promote convergence analysis, it is necessary to perform the parameter adjustment in the 

algorithms used for data generation, and iteratively solve the control problem. A heuristic is 

proposed to adjust the data generator parameters creating surfaces to assist in the convergence 

and robustness analysis process of the optimal online control methodology. The algorithm 

tested is the discrete linear quadratic regulator (DLQR) with output feedback, based on 

reinforcement learning algorithms through temporal difference learning in the policy iteration 

scheme to determine the optimal policy using input / output data only. In the policy iteration 

algorithm, recursive least squares (RLS) is used to estimate online parameters associated with 

output feedback DLQR. After applying the proposed tuning heuristics, the influence of the 

parameters could be clearly seen, and the convergence analysis facilitated. 

Keywords: Optimal Control; Reinforcement Learning; Approximate Dynamic Programming; 

Output Feedback; Tuning. 

 

Resumen 

Se presenta una heurística para el análisis de sintonía y convergencia del algoritmo de 

aprendizaje de refuerzo para el control con retroalimentación de salida con solo datos de 

entrada / salida generados por un modelo. Para promover el análisis de convergencia, es 

necesario realizar el ajuste de parámetros en los algoritmos utilizados para la generación de 

datos y resolver de forma iterativa el problema de control. Se propone una heurística para 

ajustar los parámetros del generador de datos creando superficies para ayudar en el proceso de 

análisis de convergencia y robustez de la metodología óptima de control online. El algoritmo 

probado es el regulador cuadrático lineal discreto (DLQR) con retroalimentación de salida, 

basado en algoritmos de aprendizaje de refuerzo a través del aprendizaje de diferencia 

temporal en el esquema de iteración de políticas para determinar la política óptima utilizando 

solo datos de entrada / salida. En el algoritmo de iteración de políticas, se utilizan mínimos 

cuadrados recursivos (RLS) para estimar los parámetros online asociados con la 

retroalimentación de salida DLQR. Después de aplicar las heurísticas de ajuste propuestas, se 

pudo ver claramente la influencia de los parámetros y se facilitó el análisis de convergencia. 
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1. INTRODUCTION 

The system states gather information from system dynamic, either for control or 

monitoring purposes in various kinds of systems such as: industrial, aerospace, energy, health, 

economics. The measurement of these states is done mostly by the use of sensors, which 

depending on the precision need in the study can be very expensive. 

Sometimes is not possible to measure states with sensors, either by the unavailability 

of the sensor, because the it is either expensive, unsuitable for the application or purely 

mathematical. To solve these problems is done by the inclusion of a state observer, which is a 

mathematical formulation that from past observations of the system can estimate the states 

ahead in time. Applications with parameters estimators such as recurrent neural networks like 

Hopfield, were applied for real time estimation in (Alonso, Mendonça, & Rocha, 2009). 

Sampled data from experiments are largely described by Markov Decision Processes 

Partially Observable (POMDP). The control methods applied to such systems are approached 

in (Sondik, 1971) and (Fleming, 1968). 

Methodologies to speed up the convergence process of value interation algorithms in 

POMDP are discussed in (N. L. Zhang & Zhang, 2001). Optimal control problems with finite 

and infinite horizons are presented in (Smallwood & Sondik, 1973) and (Sondik, 1978), 

respectively. Works related to theoretical basis, as survey on the state of the art, theory, 

models, algorithms and tutorials for POMDP can be found in (Monahan, 1982; Lovejoy, 

1991; W. Zhang, 2001; Littman, 2009; White III, 1991), respectively. 

Alternatives to predict the behavior is to build a model from data, using statistical 

models, heuristics, modeling by the laws which governs the studied phenomena or using 

mathematical model associated with artificial intelligent algorithms to learn systems 

dynamics, which are discussed in (Chen, Billings, & Grant, 1990; Chu, Shoureshi, & Tenorio, 

1990), (Alexander S. Poznyak, 2001) and (Nechyba & Xu, 1994). Each one of these methods 

have their own set of parameters to be tuning in order to achieve some desired performance. 

Application of system identification techniques into process control is largely used by 

researches, as well as state observers for system state estimation that could not be directly 

measured. The inclusion of state observers is to minimize the effort related to the control 

action efficiently. Foundations of observers in nonlinear systems can be found in (Guildas, 

2007) and (Anguelova, 2004). 
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The process of building models from data has advantages and disadvantages. A 

positive point is related to the possibility of building models for complex systems, with many 

variables. When the laws are not well understood, or when there is little information about the 

system dynamics available, building the model would be impossible or too costly. 

Disadvantage in using approximate models from data in some methods is related to memory 

requirements and power computing. Sometimes large amounts of memory are needed and 

great computing power as well, making the computation process time consuming or too 

expensive to be implemented. 

Artificial intelligent algorithms based on reinforcement learning techniques with 

integral action are discussed in (Modares, Peen, Zhu, Lewis, & Yue, 2014) for on-line 

controller design, considering knowledge of partial information only. Other approaches for 

control application with partial information and learning are discussed in (Safonov & Tsao, 

1997; Battistelli, Mari, Selvi, & Tesi, 2014). These references evaluate the possibility of 

identifying control actions that are able to achieve the performance specifications before 

being inserted in the feedback process. This technique is called "Unfalsified Control". This 

type of methodology is presented as an adaptive controller for selection of the most 

appropriate control actions with real time applications. 

Recent projects for data-driven on-line controllers, data-driven for navigation system, 

pilot air-crafting and adaptive dweel-time switching using the methodology "Unfalsified 

Control" are discussed in (Saeki, Kondo, Wada, & Satoh, 2014; Yongqiang, Jiabin, Xiaochun, 

& Nan, 2015; Liming, Shan, & Dan, 2015; Sajjanshetty & Safonov, 2015), respectively. 

Both control based on models and their advantages, as well as data-driven control are 

presented and discussed in (Hou, 2013), with theory and applications for adaptive controllers. 

The nomenclatures referring to methodologies based on data are large and sometimes 

confusing, such as driven or fed by data (Data-Driven), model-free, without model or not 

based on model methodologies (Model-Free). That book (Hou, 2013) proposes a 

classification of methods not based on models in two ways: one regarding on-line, off-line 

and hybrid methodologies, and another with respect to knowledge of the controller structure. 

Model-free controllers based on subspace methods have been used to perform system 

identification, based on projections. One application of model-free Linear Quadratic Gaussian 

(LQG) subspace predictive control to TCP congestion control is discussed in (Chiera & 

White, 2008). Application techniques of optimal control and regulation, such as LQG, which 

makes the inclusion of a state observer are discussed in (Favoreel, De Moor, Gevers, & Van 

Overschee, 1999) and (Favoreel, De Moor, Van Overschee, & Gevers, 1999). Design of 
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robust controllers of type, that uses the subspace technique to compute the observer gain 

without the knowledge of system dynamic, only using input/output data, this methods are 

discussed in details in 2 and (Hinnen, Verhaegen, & Doelman, 2008) and  in 

(Woodley, How, & Kosut, 2001). 

Independent of the model-free, data driven, heuristic, algorithm or methodology used, 

there are parameters and initial conditions to be set that influences the performance, the 

training, the convergence speed in order to solve a problem from a chosen method. 

The study of methods for tuning controller parameters are of great importance. There 

are many applications in many fields such as, control, system identification and estimation 

problems. When one wants to perform algorithms for control, system identification or 

parameter estimation, it is necessary to "set up" the variables related to the algorithm, i.e. start 

up the initial setup, then apply the methodology and afterwards check the performance 

achieved for that particular set up. For each set up initialization, a different algorithm 

performance is achieved. That is the importance of tuning the parameters, because it impacts 

on the global methodology performance. 

In this paper we propose a heuristic for tuning and convergence analysis of a model-

free optimal control problem based on the discrete linear quadratic regulator with output 

feedback using reinforcement learning algorithm in the presence of noise. 

This work is organized into sections containing in Section 2 the Preliminaries with the 

output feedback problem formulation and implementations aspects. In Section 3 the Tuning 

Problem Formulation is presented. In Section 4 the proposed methodology for the 

convergence analysis, tuning heuristics and metrics for data and surface generation. The 

computer Simulations and Analysis of the influence of the parameters in the data generator 

and algorithm performance is presented in Section 5. The Final Considerations are presented 

in Section 6, followed by Section 7 with the Acknowledges and Section 9 the References 

presented in the paper. 

 

2. PRELIMINARIES 

In this section we will show how to describe the states as function of the past input and 

output data of the dynamic system and the output feedback algorithm. 

Consider the following discrete linear time invariant system: 

1k k k

k k

x Ax Bu

y Cx
  

       (1) 



Research, Society and Development, v. 9, n. 2, e188922128, 2020 
(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i2.2128 

6 

where A ∈ Rn×n, xk ∈ Rn the state vector, B ∈ Rn×m, uk ∈ Rm control action vector, C ∈ Rp×n and 

yk ∈ Rp the output vector. Assume (A,B) is controllable and (A,C) observable. 

Given an instant k, the dynamics in a time horizon, described as [k −N, k], the equation 

of state and system output, can be described by a simplified model and be expressed by 

defining some variables. 

1,
N

k k N N k k NA x U ux         (2) 

[ 1, ] [ 1, ]
N

k k N k N N k k Ny V x T u         (3) 

 

where UN is the controllability matrix and NV
 the observability matrix, with 

pN n
NV R   

1N
NU B AB A           (4) 

1N

N

CA

V
CA

C

 
 
 
 
 
 


       (5) 

and TN , the Toeplitz matrix with the Markov parameters. 

2

3

0

0 0

0 0

0 0 0 0 0

N

N

N

CB CAB CA B

CB CA B

T

CB





 
 
 
 
 
 
  




    
 

     (6) 

The vectors [ 1, ]k k Nu    and [ 1, ]k k Ny   , which are the pasts inputs and outputs on the time horizon 

[k − 1,k − N], represent the available measured data available . 

1 1

2 2
[ 1, ] [ 1, ];

k k

k kpN mN
k k N k k N

k N k N

u y

u y
u R y R

u y

 

 
   

 

   
   
      
   
   
   

      (7) 

Since (A,C) is observable there is an observability index K, such that rank (VN) < n if N < K 

and rank (VN) = n if N ≥ K. So VN has full rank n, and there is a matrix M ∈ Rn×pN such that 

N
NA MV       (8) 

The observability property means that there are enough observations yk within the time 

horizon so that one can completely rebuild the state xk. This procedure was used for 

(Aangenent, Kostic, de Jager, van de Molengraft, & Steinbuch, 2005), to determine the 

control by identifying the Markov parameters. Since VN has full rank, its left inverse is given 

by 



Research, Society and Development, v. 9, n. 2, e188922128, 2020 
(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i2.2128 

7 

1( )T T
N N N NV V V V       (9) 

such that 

     0 1( )N
N N NM A V Z I V V M M        (10) 

for any matrix Z, where M0 is the minimum norm operator and ( ( ))N N NP R V I V V   , being 

the projection in the image, perpendicular to VN  (Lewis & Vamvoudakis, 2011). 

Theorem 1: Let system 1 be observable. Then the system states are given solely in terms of 

the measured data 

0 [ 1, ] 0 [ 1, ]( )k k k N N N k k Nx M y U M T u          (11) 

     [ 1, ] [ 1, ]y k k N u k k NM y M u         (12) 

or 

[ 1, ]

[ 1, ]

[ ] k k N

k u y
k k N

u
x M M

y
 

 

 
  

 
                 (13) 

where 0u N NM U M T  and 0yM M , with , 1
0 , ( )N T

N N N N N
TM A V V V V V    , the left inverse 

of the observability matrix Eq.(5) and N > K, and K the observability index, (Lewis & 

Vamvoudakis, 2011). 

Next will be presented the formulation of the output feedback problem for the DLQR. 

 

A. Problem Formulation-Output Feedback for the DLQR 

In this section, the theoretical basis of the approximate dynamic programming and 

optimal control theory are presented. The formulations of the control policy, Bellman 

equation and dynamic system states, in terms of only measured input/output data from the 

system, assemble a framework for the solution of the OPFB problem. The RL approach is 

presented in the context of the on-line DLQR design, considering policy iteration schemes to 

determine on-line the optimal control policies, (Lewis & Vamvoudakis, 2011). 

The output feedback methodology can perform, through reinforcement learning (RL) 

methods, determine the new control policy that minimizes a quadratic performance index 

associated with the past weighted inputs and outputs with the addition of a white noise. When 

we refer to inputs, we are referring to control actions. 

 

B. DLQR Control Policy and Bellman’s Equation 

In this section, the control policy and Bellman Equation will be formulated presenting 

the association of the value function of the states and the input/output values. 
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Once a stabilizing control policy uk = µ(xk) is chosen, the performance index or value 

function is defined as 

( ) ( )T T
k i i i i i

i k i k

V x y Qy u Ru r
 

 

        (14) 

with Q = QT ≥ 0 and R = RT > 0, the weighting matrices in relation to the outputs and control 

actions, respectively and the pair ( , )A C Q being observable (Lewis & Syrmos, 1995). 

It can be shown that for any policy µ (not necessarily optimal), the value function 

Eq.(14) is quadratic in state (Athans & Falb, 2013), such that 

( ) T
k k kV x x Px        (15) 

for any matrix P, (n × n). This function is represented by the Bellman Equation 

1 1
T T T T
k k k k k k k kx Px y Qy u Ru x Px        (16) 

Up to now the issues discussed here were about the theoretical development related to 

the dynamic programming foundations with regards to system states. 

Next, the change of the dependence of the states and the formulation in terms of 

measured data only and present the policy iteration algorithm (PI) used in this work will be 

presented. 

 

C. Value Function Formulation in Terms of Measured Data 

In order to write the state equation Eq.(15) in terms of past inputs and past outputs, 

consider z  the vector containing the past inputs/outputs on the horizon [k − 1,k − N]: 

[ 1, ]

[ 1, ]
[ 1, ]

k k N

k k N
k k N

u
z

y
 

 
 

 
  
 

     (17) 

Let ( )kV x
 the value function associated to the states and using Eq.(13), then 

[ 1, ] [ 1, ]( )
T
uT T

k k k k k N u y k k NT
y

M
V x x Px z P M M z

M


   

 
        

   (18) 

[ 1, ] [ 1, ]( )
T T
u u u yT

k k k N k k NT T
y u y y

M PM M PM
V x z z

M PM M PM


   

 
  

  
    (19) 

[ 1, ] [ 1, ]
T
k k N k k Nz P z   

       (20) 

Note that , [ 1, ]
mN

k k Nu R   ,   [ 1, ]
pN

k k Ny R   ,  ( )
[ 1, ]

m p N
k k Nz R 
    and 

( ) ( )m p N m p NP R    . 
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The value function at the k instant as a quadratic form of the past inputs and past 

outputs terms and the kernel of matrix P  are expressed in Eq.(20). The Matrix P  still 

depends on matrices A, B and C by M0, Mu and My. 

Next section presents the structure of the temporal difference error in terms of the 

measured past data. 

 

D. Temporal Difference Error Based on Measured Data 

This section presents the reinforcement learning method based on temporal differences 

to determine the value function on-line. 

Let the Bellman Temporal Difference Error equation for the DLQR with respect to the 

states be 

1 1
T T T T

k k k k k k k k ke x Px y Qy u Ru x Px         (21) 

The structure of Eq.(21) can be written only as function of observed output sequences 

ky  and past control action sequences ku  (Lewis & Vamvoudakis, 2011). 

To learn the internal structure of the matrix P , without depending on the matrices A, 

B and C, we can write Bellman temporal difference error, Eq.(21) for the DLQR as function 

of the measured data as follows 

[ 1, ] [ 1, ] [ , 1] [ , 1]
T T T T

k k k N k k N k k k k k N k k Ne z P z y Qy u Ru z P z             (22) 

Using the temporal difference error, the policy evaluation step, based on Bellman’s 

equation, Eq.(22), may be performed using only the measured data, without the information 

of the states and, thus, learn  without knowledge of the matrices A, B and C as follows in the 

next section. 

 

E. Writing Policy Update in Terms of Measured Data 

The Q-learning method is a model-free reinforcement learning technique that can be 

used to find an optimal action policy for any given (finite) Markov decision process (MDP) 

that can carry out the Value Iteration and Policy Iteration, without the knowledge of the 

system dynamics. 

From the construction already presented, we can define an improvement policy in 

terms of measured data. 

1 1( ) min( )
k

T T T
k k k k k k

u
x y Qy u Ru x Px         (23) 
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[ , 1] [ , 1]( ) min( )
k

T T T
k k k k k k N k k N

u
x y Qy u Ru z Pz          (24) 

Partitioning [ , 1] [ , 1]
T
k k N k k Nz Pz    ,  

0

[ , 1] [ , 1] [ 1, 1] 22 23 [ 1, 1]

[ , 1] 32 33 [ , 1]

T

k u y k

T
k k N k k N k k N u k k N

k k N y k k N

u p p p u

z Pz u p P P u

y p P P y
         

   

    
         
        

   (25) 

where m m
op R  , ( ( 1))m m N

up R    and m pN
yp R  . 

Now the optimization problem in Eq.(24), can be determined by differentiating with 

respect to uk and equaling to 0, so we have, 

0 [ 1, 1] [ , 1]0 k k u k k N y k k NRu p u p u p y           (26) 
or 

1
0 [ 1, 1] [ , 1]( ) ( )k u k k N y k k Nu R p p u p y

            (27) 

This controller is an autoregressive moving average dynamic model that generates the 

current control actions using only past data sequences. As in the Q-learning method, called by 

(Werbos, 1992) as “learning dependent action”, the minimization problem may be developed 

with respect to the matrix kernel of P , thus, dispensing the knowledge of the system 

dynamics. The algorithm of policy iteration using output feedback with policy evaluation and 

policy improvement is described next. 

___________________________________________________________________________ 

- Algorithm - Policy Iteration Using Output Feedback (OPFB) 

Select a stabilizer control policy u0
k = µ0 for j = 0,1,..., play until convergence: 

1.Policy Evaluation: Compute 1jP  , such that 

1 1
[ 1, ] [ 1, ] [ , 1] [ , 1]0 ( )T j T j T j T j
k k N k k N k k k k k k N k k Nz P z y Qy u Ru z P z 
             (28) 

2.Policy Improvement Partition P  as in Eq.(25) and define updated policy  by 

 1 1 1 1 1 1 1
0 [ 1, 1] [ , 1]( ) ( ) ( )j j j j j j

k k u k k N y k k Nu x R p p u p y      
           (29) 

___________________________________________________________________________ 

 

The implementation aspects of the policy iteration algorithm, noise and discount factor 

influence will be discussed in the next section. 

 

F. Implementation, Noise and Discount Factor 
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This section will present the influence of the discount factor aspects with the purpose 

of mitigating the undesirable effects of noise, which can converge to biased solutions, (Al-

Tamimi, Lewis, & Abu-Khalaf, 2008). 

The presented Policy Iteration algorithm can be solved on-line by standard methods as 

Least Squares or Recursive Least Squares. In this work we used the RLS as in (Bradtke, 

Ydstie, & Barto, 1994), the RLS was used in the Q-learning algorithm to solve Eq.(28) using 

the following form: 

1
[ 1, [ 1, ] [ , 1] [ , 1][ (( ))j T T T
k k N k k N k k k

j
N k k N k k kvec P z y Qyz u Ruz z

             (30) 

where ⊗ is the Kronecker product and vec, the column operator (Brewer, 1978). The terms 

with quadratic indexes Kronecker product are added. 

To solve Eq.(30), it is necessary that the  [ 1, ] [ 1, ] [ , 1] [ , 1][ ]k k N k k N k k N k k Nz z z z           be 

linearly independent in the interval, which is a property known as persistent of excitation 

(PE). 

By default, we inject a white noise to the control signal to generate persistent 

excitation, i.e., ˆk k ku u d  , with ku  a control action computed by the PI algorithm, and dk 

being the white noise. 

It is known that the inclusion of noise can lead to a result with bias in the output and, 

thus, an error in the identification of system dynamics. In (Lewis & Vamvoudakis, 2011), the 

effect of bias noise inclusion for Bellman equation was discussed, and so the effect of the 

discount factor to decrease the undesired effect of noise. 

With the inclusion of the discount factor  1  , we have the modified version of the PI 

algorithm 

1
[ 1, ] [ 1, ] [ , 1] [ , 1]( )[ ( )j
k k N k k N k k N k k Nvec P z z z z
            (31) 

 

3. TUNING PROBLEM FORMULATION 

This section presents the tuning problem formulation to set up the simulations in order 

to select the parameters that best solve the OPFB algorithm presented in previous section. 

The problem formulation that minimizes the OPFB error can be an optimization 

problem. This problem will be presented. Suppose an error surface from the application of a 

random setup of the parameters, in this case, the states initial conditions, the random noise 

variance and the discount factor used by the PI algorithm. For different values of theses 
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parameters there will have different error associated with each setup simulation, affecting the 

training processes and the overall algorithm convergence performance. 

Let e  be the smallest error from an Error Surface generated by the states * *
1 2( , )x x  and 

ieV , the neighborhood of error ie  generated by the states ( ),i jx x , with radius, such that 

* *
1 2( , ) ( , )i jx x x x   . 

After the selection of states belonging to the neighborhood ieV  and performing 

simulations for each selected element, then we compute error and observe its behavior in 

order to select the states that generated the smallest absolute error of all, reducing the step size 

for simulations in order to minimize the total absolute error. Thus, we have the following 

optimization problem: 

 
1 2

1 2
, ,

min ( , , )
x x

E x x


      (32) 

After determining the state (x1,x2) that generate a smaller error, the discount factor 

adjustment is done, as was observed by means of simulations that for each set of states the 

discount factor undergoes some changes, with respect to the discount factor set in the initial 

simulations that generated the surfaces. 

After selecting the new discount factor a check is performed around the border of the 

best solution, varying the states again and thus ending the adjustment process, both the states 

and the discount factor, since the step size decreases for each new adjustment. 

 

4. PROPOSED METHODOLOGY 

In this section, the strategies to perform the convergence analysis, through the 

formulation of the metrics used to evaluate the algorithms convergence behavior are 

presented. The heuristic for to the selection of the initial parameters used in the data 

generating model and for a more reliable data will be presented. 

There are several difficulties in the preparation of data-based models. As data 

acquisition depends on actual experiments or simulations with the use of algorithms and 

independent of the choice, both approaches have their own characteristics and limitations. 

When a priori mathematical model of a system is available, the data can be generated using 

the model in simulations and thereby test the system response to parametric variations of the 

plant, and the influence of input or output noise signal and thus test the model for more 

realistic situations. 
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In subsection 4-A the metrics used to evaluate the performance of the algorithms is 

presented and in subsection 4-B, the heuristics for tuning the algorithm and data generator is 

presented. 

 

A. Convergence Analysis 

The methodology of the algorithm Output Feedback (OPFB) (Lewis & Vamvoudakis, 

2011) is based on the construction of a matrix P  Eq.(25), which will provide the parameter 

coefficients that will be used to define the next control action, such parameters are: 0p , up , 

and 1 2
 y y yp p p    . 

The estimation of the matrix coefficients P , Eq.(25), can be made by some parameters 

estimation algorithm such as LMS, RLS, Batch LS, Kalman filter, Neural Networks, Fuzzy 

Logic. 

In order to evaluate the quality of the solution, the following criteria were used: 

1

h
i
n j j

j

E a x


       (33) 

where, i
nE , is the error of simulation i, after n iterations, h = [(m + p)N][(m +p)(N + 1)]/2, 

concerning the minimum number of independent terms referring to the matrix kernel P , 

Eq.(25), where m is the number inputs, p the number of outputs and N is the time horizon, ja  

is the estimation value of parameter j after n iterations, jx , is the desired value of parameter j 

after n iterations. 

Another metric used to observe the behavior of the algorithm is the estimation error 

variance for each of the estimated parameters during the iterative process, where the error 

variance for each simulation, is set as 

   
2

,2

1 1

| |
( ) , 1, 2,..., .

h n
j k ji

i n
j k

e e
S E k n

n 


      (34) 

 
where, k is the number of iterations, ej,k, is the error of parameter j in iteration k, e¯j, is the 

mean estimation error of parameter j after n iterations, 2( )i
i nS e , is the sum of the error 

variances of estimated parameters in simulation i for n algorithm iterations. 

With these two metrics to evaluate the algorithm convergence performance and the 

quality of the solution and some heuristics with the purpose of guiding the solution search 

process in the presence of noise, then it could be possible to decrease the algorithm 

complexity in the simulation process. Another aspect that will be available with this metrics 
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and heuristics is the possibility of testing different kinds of noise amplitudes, using other 

types of number generator by using other distribution density functions. 

It is noticed in real plants the lack of information of the function associated with noise 

distribution, which implies difficulties to be overcome by the control methods, since the 

uncertainty is present in many situations. 

Ideally, the simulation process should control the plant, independent of the disturbance 

characteristics associated with it. By this scope, it is quite usual to conduct the study of Monte 

Carlo simulations to evaluate the behavior of algorithms different sequences of random noise 

or small perturbations in the parameters of the system. 

 

B. Heuristics for Surfaces Generation and Parameters Selection 

 In order to perform the algorithm tuning regarding the initial conditions of the 

parameters associated with a particular algorithm, surfaces are constructed with the initial 

conditions of the parameters aiming at generating the data related to past control actions and 

past outputs. 

 The following steps were used to observe the behavior of the algorithm related to the 

initial parameters variations, searching for better solutions. 

First we generate an absolute error surface Eq.(33). Then identify the region where the 

best solution is found for that configuration and select the parameters values.  

From the region which resulted the best solution, generate another surface near the 

best setting solution, and repeat this operation until the algorithm finds a configuration that 

generates the lowest total error, from Eq.(33) and possibly the lower variance, from Eq.(34).  

If the average between the different configurations is very high, then we can use the 

coefficient of variance, which is the ratio between the mean and the standard deviation for 

each configuration. 

The steps to be developed over the parameter selecting process are as follows: 

 Set up the configuration of the initial parameters with varying limits with high 

amplitude, in accordance with the experience of the expert with respect to the parameters of 

the initial conditions; 

 Perform various simulations and select the seed for the random number that generated 

the best solution, i.e., the lower error; 

 Generate a figure with the mean square error to observe the influence of noise along 

the simulations; 
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 Build a surface for the absolute error for parameters variations to determine the region 

where the error is lower, and then select the parameters that came to that result; 

 Once the initial parameters are selected, we construct another surface of the error, now 

around the best solution initially found, with range for the parameters variation; 

 Finally, we evaluated whether the error is satisfactory or not, otherwise check if the 

number of iterations is enough for convergence of the algorithm, if not, increase the number 

of iterations. 

After the analysis of the surfaces it will be possible to identify which parameters are 

best for starting conditions which brings the lower absolute error with the minimum variance. 

 

5. SIMULATION AND CONVERGENCE ANALYSIS 

In this section we discuss aspects related to the OPFB implementation algorithms, 

with Policy Iteration (PI). 

The presented work we will cover only the Policy Iteration algorithm (PI). For the PI 

algorithm, a stabilizing initial policy for the controller is necessary. For this we developed a 

simulator that could generate randomly a symmetric and positive definite matrix P, and then 

calculate the gain of the closed loop system, and thus evaluate whether the eigenvalues for the 

closed loop system would be inside the unit circle. 

 

A. Initial Setup and Computational Simulations 

 The system used in the simulations for input and output data is described by the 

following dynamical system, 

1

1.1 0.3 1

1 0 0k k kx x u

   
    
   

     (35) 

 1 0.8k ky x                    (36) 

  The number of parameters h = [(m + p)N][(m +p)(N + 1)]/2 to be estimated for this 

system were 10. 

 Initially 1000 simulations were performed, using the PI algorithm for the OPFB and 

evaluated the lowest total absolute error Eq.(33) for the 10 coefficients estimated by the RLS, 

with forgetting factor λ = 1, white noise with variance of 1.2 and mean 0 and initial states x1 = 

x2 = 200.  

  The number of iterations used for control action estimations was 1,000, using temporal 

difference error algorithm and one iteration for the RLS. As the application was developed to 
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be on-line, we needed to store data from the first three iteration, then we perform the 

algorithm after the fourth iteration. 

The mean square error for 1000 simulations is presented in Figure 1. Most of the 

results except for one simulation, near iteration 800, the MSE was below 20. After 1000 

simulations the lowest total absolute error Eq.(33) reached was 0.4963. 

 

 Figure. 1: Mean Squared Error for 1000 Simulations. 

 Source: MATLAB® Simulation by Authors 

 

 From Figure 1 can be view that near iteration 800 a peak could be done by a particular 

random noise and also by some roundoff through the iteration process. The objective here is 

to select an initial noise signal to be fixed for further use to investigate the parameters 

sensibility in the algorithm. So, the noise signal which produced the lowest total absolute 

error will the be the chosen one. 

 The true ( TP ) and estimated ( EP ) matrices solutions from the best result from the 1000 

simulations presented in Figure 1 which produced the smallest total absolute error Eq.(33) are 

presented below. 
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1.0150 0.8440 1.1455 0.3165

0.8440 0.7918 1.0341 0.2969

1.1455 1.0341 1.3667 0.3878

0.3165 0.2969 0.3878 0.1113

TP

  
   
  
   

   (37) 

 

1.0836 0.8324 1.1263 0.3067

0.8324 0.8195 0.9302 0.2391

1.1263 0.9302 1.4073 0.3764

0.3067 0.2391 0.3764 0.1450

EP

  
   
  
   

   (38) 

The total absolute error was used and presented in Figure 2, because the MSE could not 

show some information about variability. 

 

 Figure 2: Total Absolute Error for 1000 Simulations. 

 Source: MATLAB® Simulation by Authors 

 

From Figure 2 can see that there was a very high value near simulation 800, but most 

of the simulations returned error less than 50. The total absolute error Eq.(33) is the sum of 

the absolute values of the errors of the estimated coefficients of the matrix P . 

The true values of matrices presented by Eq.(37) and estimated parameters using the 

RLS in Eq.(38), shows some errors, but this is the first step through the process of tuning. 
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The coefficients evolution through the reinforcement learning and parameter 

estimation of the estimated matrix is presented in Figure 3. 

 

Figure 3: Estimation Error of Coefficients by RLS. 

Source: MATLAB® Simulation by Authors 

 

The convergence of the estimated coefficients was reached by iteration number 900. 

Simulations using more iterations were performed, but as no further improvement was 

achieved, 1000 iterations were chosen in order to decrease the computational cost. 

From Figure 3 can be seen that the coefficient p8, with blue color is the coefficient 

with high vales even after 800 iterations. It will be that these coefficients will get better as we 

apply the proposed methodology for tuning the algorithm. 

 

B. Discount Factor γ and xk Parameter Variations 

The performance of the OPFB algorithm is related with to discount factor and the data 

model used to generate the output data. In this section we will discuss the discount factor and 

parameter kx  variations which are used in the data model to generate the output data. Surfaces 
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are built to show the variations of these two parameters to search for the best solution and to 

better understand their influence toward the total absolute error. 

 Surface of the total absolute error with respect to variations of the discount factor is 

presented in Figure 4. The discount factor is used to decrease the noise, and the multiplicative 

factor is used to weight the initial condition of the states for generating the output data. 

 

 

Figure 4: Error Surface for Discount Factor and kx Parameter Variations. 

Source: MATLAB® Simulation by Authors 

 

In Figure 4 the surface represents the influence of the discount factor and parameter 

kx on the total absolute error. 

The best solution with the smallest absolute error in the surface was 0.3889, for the 

discount factor 0.21 and kx   201. The discount factor (  ) variation was established in the 

range of 0.01 to 1 with intervals of 0.1, and the kx  factor variation was set from 1 to 900 with 

intervals of 100, and a white noise of 0 mean and variance 0.4. 
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Now, considering a range around the best solution found on the surface of Figure 4 and 

varying the discount factor from 0.1 to 1 with intervals of size 0.5 and the range of parameter 

kx  from 1 to 300 with intervals of size 10, results in the surface shown in Figure 5. 

 

 Figure 5: Error Surface for Discount Factor and kx Variations. 

  Source: MATLAB® Simulation by Authors 

  

 The surface generated in Figure 5 shows the influence that the intervals size related to 

the shape of the error surface have. Notice that the surface of Figure 5 is smoother than that in 

Figure 4. The best solution found in the surface of Figure 5 resulted in error of 0.3568 with 

discount factor of 0.20 and factor xk = 191. 

 

C. Discount Factor   and kPrls  Variations 

In this section, we will discuss the influence of the discount factor and a parameter 

kPrls . The kPrls  is a multiplicative factor of the initial covariance matrix of the RLS 

estimator. The influence of the discount factor and kPrls  parameter variations were done in 

the starting set up of the RLS algorithm and can be seen in Figure 6. 
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From Figure 6, the total absolute error behavior increases as the discount factor 

increases too. The result which brought the lower total absolute error occur when the discount 

factor is lower, precisely the best result is achieved when the discount factor is 0.21. No clear 

pattern could be seen from kPrls  increase in the chosen range. 

 

Figure 6: Error Surface for Discount Factor and kPrls  Variations. 

Source: MATLAB® Simulation by Authors 

 

It can be seen from Figure 6 some discontinuity on error surface indicating that the 

algorithm diverges, with no solution. This could indicate that the OPFB algorithm has a 

dependence of the estimator. 

The smallest error found on the surface of Figure 6 was 0.3637, with discount factor 

equal to 0.21 and factor kPrls = 1. 

Another analysis was done adding white noise with mean 0 and variance between 0.01 

to 10 with increment intervals of 0.5 and discount factor with range of 0.01 to 1, with 

intervals of 0.01. The purpose was to analyze the algorithm performance and convergence in 

the presence of noise. 
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The surface with the results of the added noise can be seen in Figure 7. It is observed 

from Figure 7 that the discount factor works to reduce the unwanted effect of noise and, in 

this case, the single best result was achieved for the discount factor equal to 0.09. The 

algorithm worked well even with the increase of the noise variance, as can be seen in Figure 

7. 

 For each point on the surface, only 5 simulations were performed, where the total 

absolute error of 1.1909 was computed. This error was achieved with noise variance of 3.51. 

 

Figure 7: Error Surface for Variation in Discount Factor and Noise. 

Source: MATLAB® Simulation by Authors 

 

Now, narrow intervals were chosen for the discount factor and noise variance around 

the best solution that was achieved in the Figure 7. The noise variance range was between 0.1 

to 4, with increment of 0.1. The number of simulations performed was 25 for each surface 

point, choosing the best solution among all the simulations. The discount factor range was 

from 0.01 to 0.3 with intervals of 0.01. The total absolute error surface is shown in Figure 8. 

 



Research, Society and Development, v. 9, n. 2, e188922128, 2020 
(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i2.2128 

23 

 

Figure 8: Error Surface for Discount Factor Range from 0.01 to 0.3 and Noise Range 

from 0.1 to 4. 

Source: MATLAB® Simulation by Authors 

 

As for each simulation we are varying the noise variance, we have that the total error 

will not follow a smooth pattern, generating several different total errors. 

The purpose of the error surface generated in Figure 8 was to show the direct influence 

of increased noise variance related to the total absolute error. We could also calculate the 

Pearson correlation coefficient to identify whether there is a linear correlation between the 

noise and the total absolute error. Independently, one can see that this phenomenon does not 

occur. We could even compute other kind of associative measure like Spearman correlation 

coefficient, which is not necessarily linear. 

Restricting the discount factor for a range between 0.01 and 0.35 and noise with 

variances between 0.1 and 3.5, with intervals of 0.05 it can be observed in Figure 9; just as in 

Figure 8, where minor errors are concentrated in the range up to 0.1 for the discount factor 
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and the variance of the noise around 3. The best results were obtained when the noise variance 

was 2.95 on this surface the smallest error achieved was 1.1019. 

 

Figure 9: Error Surface for the Discount Factor Ranges from 0.01 to 0.35 and Noise 

Range from 0.1 to 3.5. 

Source: MATLAB® Simulation by Authors 

 

 This smallest error achieved can be explain since the number of simulations was small, 

because the purpose was to investigate the influence of the discount factor and the noise 

variance in the total error and have a visual tool for this evaluation through the surface. 

 Once identified the influence of noise and discount factor with respect to the total 

absolute error, now we can also observe the behavior of initial states that will be used to 

generate the data and thus check if there is any significant influence from them. 

 For the process in question, we have two states which we will call x1 and x2. Initially, 

we will observe the total absolute error with respect to the initial state x1 range from 0 to 5.000 

with intervals of 200 and x2 ranging from −2000 to 2000, with increment of 500. 

  



Research, Society and Development, v. 9, n. 2, e188922128, 2020 
(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i2.2128 

25 

The smallest error occurred for x1 = 1600 and x2 = 1000, with total absolute error of 

0.3205 in Figure 10. To calculate the total absolute error for each pair of states (x1,x2), 25 

noise free simulations, so we could identify what initial states produce the smallest error. 

 

 
Figure 10: Initial States 1x  and 2x  Model Generator Variation. 

Source: MATLAB® Simulation by Authors 

 

Looking to the Figure 10 can be seen many edges on the surface, because the intervals 

between the variations were 200 for x1 and 500 for x2. Selecting now a smaller increment for 

each interval of x1 with size 100, we can see with more details the variation of behavior and a 

smoother error surface, because we computed more points using smaller increments in the 

range of the intervals. 

It can be seen in Figure 11 it was possible to achieve an error of 0.2644, for x1 = 2700 

and x2 = 1500. In that figure we can see more clearly the behavior of the parameters x1 and x2. 

The parameter x1 seems to produce more variable errors for smaller values, between 0-3000, 

and for higher values of x2, between 02000. Now we choose to construct a surface around the 

smallest absolute error of Figure 11, in order to define x1 and x2 values, which bring the 

smallest absolute error. 
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Figure 11: Initial States Set up for Variations of x1 and x2, with size 100 to x1 and 500 to 

x2. 

Source: MATLAB® Simulation by Authors 

 

After some other simulations with variations around the smallest error from Figure11, 

we can get the best value of x1 that should be between 2750-2800 and x2 between 1000-1020. 

If we restrict the range of variation of x1 between 2750 to 2800 and x2 between 1000 and 1020, 

we get the result of the absolute total error in Figure 12, with total absolute error of 0.1019 for 

a discount factor equals to 0.20. 

Several simulations were performed to compute in the mentioned ranges, varying with 

intervals of 1 unit only and then compute the total absolute error in order com build the 

surface and then have a visual behavior of the parameters influence to the total absolute error. 

From Figure 11 is clear the minimum by looking up the shape of the total absolute error 

behavior. 
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Figure 12: Initial States Set up Variations for x1 and x2, between 2750−2800 for x1 and 

1000−1020 for x2. 

Source: MATLAB® Simulation by Authors 

 

From Figure 12 we can observe in the surface the minimum value of the total absolute 

error clearly. The values for x1 and x2 were x1 = 2771 and x2 = 1012. 

We can see from the above results that the algorithm is sensitive to initial data of the 

states being of great importance the proper determination of them in the simulation process, in 

order to test and validate a methodology or algorithm. The construction of a reliable data 

generator is of great importance. 

Finally, we decided to simulate again small variations on the discount factor in order to 

see if it was possible to get a smaller error, with a fine tuning of the discount factor parameter. 

After the changes in the discount factor and we got better results, but when we carried out 

these tests. We also noticed that the x1 and x2 changed from their values. 

Performing a refinement near the best solution for x1 and x2 and varying the discount 

factor between 0.19 and 0.21 at intervals of 0.0001, we obtained an error of 0.0740 for x1 = 

2902, x2 = 977.8 and discount factor 0.1916. 
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The estimated and desired matrices results achieved were: 

1.0150 0.8440 1.1455 0.3165

0.8440 0.7918 1.0341 0.2969

1.1455 1.0341 1.3667 0.3878

0.3165 0.2969 0.3878 0.1113

TP

  
   
  
   

    (39) 

1.0155 0.8440 1.1355 0.3200

0.8440 0.7883 1.0608 0.2969

1.1355 1.0608 1.3845 0.3973

0.3200 0.2969 0.3973 0.1138

EP

  
   
  
   

    (40) 

 
Most of the coefficients converge before 400 iterations, only 2 coefficients, P8 and Py1 

converged before 600 iterations. The Coefficients P8 and Py1 had the slowest convergence rate 

as can be seen from Figure 13. 

 
Figure 13: Error of the Estimated Coefficients Total Error 0.0740. 

Source: MATLAB® Simulation by Authors 

 

The error for each coefficient estimated along the iteration process is presented in 

Figure 13. After this last refinement on the parameters, no further improvement could be 

achieved, and the convergence of the parameter occurred by 800 iterations. 
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6. FINAL CONSIDERATIONS 

The presented work showed a general methodology for the selection of the initial 

parameters, and a heuristic for preparing a data generator based on models for data-based 

methods, in order to produce more reliable data. 

A data generator, statistical metrics and heuristics for selecting parameters with 

assistance of surfaces were proposed to support in the algorithm convergence and robustness 

analysis of the DLQR with output feedback. 

The methodology was evaluated with respect to the influence of noise and the 

response of the tested algorithm which best produces a good quality data generator for data-

based methodologies. 

Finally, we concluded that the application of heuristics associated with the data 

generator and surface buildings for the selection of parameters is promising with respect to 

data generation in a more reliable manner, as well as the use of statistical metrics proposed to 

evaluate the performance, convergence and robustness for on-line DLQR based on 

reinforcement learning with output feedback. 
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