
Research, Society and Development, v. 12, n. 2, e28712240312, 2023 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v12i2.40312 
 

 

1 

Freya: An educational MATLAB GUI-based tool for generalized Fourier series 

Freya: Uma ferramenta educacional em Ambiente GUIDE do MATLAB para séries de Fourier 

generalizadas 

Freya: Una herramienta educativa en el Entorno GUIDE de MATLAB para series de Fourier 

generalizadas 

 

Received: 01/26/2023 | Revised: 02/07/2023 | Accepted: 02/08/2023 | Published: 02/13/2023 

 

Humberto Gimenes Macedo 
ORCID: https://orcid.org/0000-0002-0858-6283 

  Vale do Paraiba University, Brazil 

E-mail: gimeneshumberto@outlook.com 

Virginia Klausner de Oliveira 
ORCID: https://orcid.org/0000-0003-0250-5574 

Vale do Paraiba University, Brazil 
E-mail: virginia@univap.br 

Anna Karina Fontes Gomes 
ORCID: https://orcid.org/0000-0001-9016-150X 

Federal Institute of São Paulo, Brazil 
E-mail: anna.gomes@ifsp.edu.br 

Francisco Carlos Rocha Fernandes 
ORCID: https://orcid.org/0000-0003-2922-3358 

Bauru School of Technology, Brazil 

E-mail: fcrochafernandes@gmail.com 

 

Abstract 

The Fourier analysis is a very powerful mathematical tool to decompose functions into their frequency components. 

Due to this, it has applications in a wide variety of fields inside the realm of science and engineering. As usual, this 

theory starts with a discussion about the trigonometric Fourier series, the expansion of a function in terms of sines and 

cosines, and then is generalized in the sense that other functions rather than the trigonometric ones can be used as an 

orthogonal basis, as the eigenfunctions of some specific Sturm-Liouville problems, such as Bessel functions and 

Legendre polynomials. In this direction, we present the so- called Freya, an educational graphical user interface (GUI) 

for the generalized Fourier series developed using the interactive MATLAB (MATrix Laboratory) App Designer 

environment. We aim to provide a user-friendly tool as a learning aid system for students to gain a comprehensive 

understanding of the subject as well as for teaching. 

Keywords: Generalized Fourier series; Sturm-Liouville problems; Bessel functions; Legendre polynomials;  

MATLAB. 

 

Resumo  

A análise de Fourier é uma ferramenta matemática muito poderosa para decompor funções em seus componentes de 

frequência. Devido a isso, tem aplicações em uma variedade ampla de áreas dentro do domínio da ciência e da 

engenharia. Como de costume, essa teoria começa com uma discussão sobre a série trigonométrica de Fourier, a 

expansão de uma função em termos de senos e cossenos, e depois é generalizada no sentido de que outras funções, além 

das trigonométricas, podem ser usadas como base ortogonal, como autofunções de alguns problemas específicos de 

Sturm-Liouville, como funções de Bessel e polinômios de Legendre. Nesse sentido, apresenta-se a chamada Freya, uma 

interface gráfica do usuário (GUI) educacional para a série de Fourier generalizada desenvolvida usando o ambiente 

interativo MATLAB (MATrix LABoratory) App Designer. Nosso objetivo é fornecer uma ferramenta amigável como 

um sistema de auxílio ao aprendizado para que os alunos obtenham uma compreensão abrangente do assunto, bem como 

para o ensino. 

Palavras-chave: Série de Fourier generalizada; Problemas de Sturm-Liouville; Funções de Bessel; Polinômios 

de Legendre; MATLAB. 

 

Resumen  

El análisis de Fourier es una herramienta matemática muy poderosa para descomponer funciones en sus componentes 

de frecuencia. Por esta razón, la herramienta se puede aplicar en una amplia variedad de áreas dentro del dominio de la 

ciencia y la ingeniería. Como de costumbre, esta teoría comienza con una discusión de la serie trigonométrica de Fourier, 

la expansión de una función en términos de senos y cosenos, y luego se generaliza en el sentido de que funciones 
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distintas a las trigonométricas se pueden usar como base ortogonal, como por ejemplo: funciones propias de algunos 

problemas específicos de Sturm-Liouville, como las funciones de Bessel y los polinomios de Legendre. En este sentido, 

presentamos "Freya", una interfaz gráfica de usuario (GUI) educativa para la serie de Fourier generalizada desarrollada 

utilizando el entorno interactivo MATLAB (MATrix LABoratory) App Designer. Nuestro objetivo es proporcionar una 

herramienta fácil de usar como un sistema de ayuda al aprendizaje para que los estudiantes obtengan una comprensión 

integral de la materia, así como para la enseñanza. 

Palabras clave: Series de Fourier generalizadas; Problemas de Sturm-Liouville; Funciones de Bessel; Polinomios de 

Legendre; MATLAB. 

 

1. Introduction 

1.1 Historical Prologue 

Jean Baptiste Joseph Fourier was born in poor circumstances in France on March 21, 1768, in the town of Auxerre 

(Bracewell, 1985). His father, from whom he inherited the name, was a tailor who married twice. In the second marriage, he had 

twelve children and Fourier was ninth among them. Unfortunately, Fourier becomes an orphan before completing ten years old, 

since his mother died in 1777 and his father in the following year (Prestini, 2016). At the age of 12, he entered the École Royale 

Militaire and very soon his talent was evidenced in several areas of knowledge, in particular for Mathematics. At the age of 

seventeen, his ambition was the military career, but his application to enter the artillery or the engineers were rejected by the 

minister of war, probably because he was not a noble (Prestini, 2016). In his twenties, Fourier was involved for the first time 

with politics in a troubled period of French history. 

The end of the eighteenth century is a period characterized by economic, social, and political instabilities due to the fall 

of the ancient regime, as a result of the French Revolution. Fourier went through the Revolution as a convinced Jacobin, being 

a member of the Comité de Surveillance (1793) and the president of the Revolutionary Committee (1794), both in Auxerre. He 

believed in the ideals of the Revolution, as he demonstrated in some letters, but always retained an independent judgment against 

the excesses of the Revolution (Prestini, 2016). In particular, Fourier was assigned to a commission in Orleans and became 

involved in a local dispute against the abuse of power of the Convention in that town. As a result, he was denounced to the 

Convention and declared incapable  of receiving such commissions in the future (Prestini, 2016). Feeling injustice by this 

declaration, he goes in person to Robespierre in Paris to pledge for his cause, being arrested on his return to Auxerre on July 4, 

1794. Because of the fall of Robespierre on July 27, Fourier regained his freedom, owing to this episode both life and liberty. 

After this, Fourier was arrested a second time under the charges of inspiring terrorism during the Terror (Maurey, 2019). 

Soon after being released from his first imprisonment, Fourier is chosen by the St. Florentin district to be one of the 

1500 students in the newly École Normale in Paris, created by a decree from October 30, 1794, to conceive a new educational 

system in agreement with the ideals of the Revolution. As a student at École Normale, Fourier had contact with some of the most 

renowned mathematicians in the country, namely Joseph Louis Lagrange (1736-1813), Pierre Simon Laplace (1749-1827), and 

Gaspard Monge (1746-1816), who in the future were going to play a role in Fourier’s life (Prestini, 2016). Under the influence 

of Monge, Fourier is appointed to an assistant teaching post in the École Centrale, which by a decree from September 1, 1795, 

is renamed to École Polytechnique. There, he became involved in several activities beyond teaching, publishing his first paper 

in 1798. 

On March 1798, the minister of the interior invited Fourier to be part of the Commission of Arts and Sciences of the 

expedition of general Napoleon Bonaparte in Egypt (Scharlau & Opolka, 1985). He spent 3 years there and was assigned to deal 

with several administrative and judicial issues, earning the confidence of Napoleon. In particular, he helped to organize an 

expedition to Upper Egypt whose discoveries served as a basis to conceive the manuscript Description of Egypt, in which Fourier 

provided a historical introduction (Prestini, 2016). In November 1801, Fourier returned to Paris and resumed his teaching position 
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at École Polytechnique, but on February 1802 Napoleon appointed him to be the prefect of the department of Isère (González-

Velasco, 1996). 

It is outstanding that while mayor he found time to work on the theory of the conduction of heat, writing a memoir in 

1807 that he presented to the Institut de France (Grattan-Guinness, 2005). Four mathematicians were appointed to examine 

Fourier’s paper, three of them - Lagrange, Laplace, and Monge - had already a high opinion of Fourier as mentioned earlier. Due 

to objections of the referees, who criticized the lack of rigor regarding the derivation of the heat equation and the use of 

trigonometric series to represent arbitrary functions, the paper was not published (Boyce et al., 2001). Fourier extended and 

improved it for the occasion of the grand prize in mathematics, promoted by the Institut in 1812, and submitted a new memoir 

at the end of 1811, as a candidate for the prize (Carslaw, 1950). Despite having won, Fourier’s memorial was not published 

under similar criticism from the referees. As he understood that the Institut de France was in no hurry to publish his work, he 

wrote another version of it as a book entitled Analytical Theory of Heat, published only on 1822 (Herivel & Williams, 1975). 

The problem of the representation of functions by trigonometric series remained open from the middle of the 18th 

century until 1829, when the German mathematician Johann Peter Gustav Lejeune Dirichlet (1805 - 1859) introduced the 

sufficient conditions for the convergence of the Fourier series (Prestini, 2016), since Fourier’s argument was still imprecise in 

those days. Fourier died on May 4, 1830, leaving behind a theory that has very important applications on modern subjects such 

as electrical engineering, e.g. signal processing and circuit network analysis (Hmurcik et al., 2000; Reed et al., 1990), and physics, 

e.g. quantum mechanics and electromagnetism (Arrayás & Trueba, 2018; Do, 2018; Horwitz, 2020;), to name just a few. The 

success of the ideas introduced by Fourier had a profound impact on mathematics (Prestini & Prestini, 2004), as they required a 

redefinition of the concept of function, the introduction of a precise notion of convergence and a reexamination of the concept 

of integral (Debnath, 2012). 

 

1.2 Goals and Paper’s Structure 

The main purpose of this paper is to present a new MATLAB GUI-based tool for generalized Fourier series and show 

its capabilities and functionalities that can be explored for educational purposes. Also, it is intended to describe the underlying 

mathematics used by the authors of this text to implement the tool using a programming language. The motivation for the 

development of Freya is  to disseminate the Fourier Analysis in a more didactic way due to its practical importance, as mentioned 

in Subsection 1.1. 

The remainder of this paper is structured as follows. Section 2 presents a review on generalized Fourier series that arises 

in the context of Sturm-Liouville problems (SLP) and three specific cases are studied: trigonometric Fourier series, Fourier- 

Legendre series, and Fourier-Bessel series. In each one, the orthogonality of the basic functions is shown and some formulas are 

obtained. Section 3 details Freya, an educational tool to assist undergraduate students attending classes that rely on this theory, 

especially in computer and electrical engineering courses. The paper is concluded in Section 4 with some concluding remarks 

regarding the obtained results and the possible directions for future work. 

 

2. Methodology 

This section describes the generalized Fourier series to address the problem of expanding a function in an infinite set of 

orthogonal basis functions. To find such a basis, one possibility is to use the eigenfunctions of specific Sturm-Liouville problems. 

This idea can be applied to the trigonometric Fourier series, Fourier- Legendre series, and Fourier-Bessel series, as presented in 

subsections 2.2, 2.3, and 2.4, respectively. Some alternative representations of the trigonometric Fourier series are also discussed, 

namely, the exponential and polar Fourier series since they will play an important role in Section 3. 

http://dx.doi.org/10.33448/rsd-v12i2.40312
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2.1 Generalized Fourier Series 

Let 𝑓: [𝑎, 𝑏] → R, with 𝑎 < 𝑏, and 𝐵 = {𝜑𝑛(x)}n=0
∞  be an infinite orthogonal set of functions on the same interval 

with respect to the weight function 𝑤(𝑥) > 0  on [𝑎, 𝑏]. Thus, it follows by definition that 

⟨𝜑𝑛, 𝜑𝑚⟩ = ∫  
𝑏

𝑎

𝑤(𝑥)𝜑𝑛(𝑥)𝜑𝑚(𝑥)𝑑𝑥 = {
0, 𝑛 ≠ 𝑚

∥∥𝜑𝑛(𝑥)∥∥
2
, 𝑛 = 𝑚

,            (1)

()
 

where 〈∙,∙〉 denotes a weighted inner product, ‖∙‖ the corresponding induced norm, and 𝑚, 𝑛 ∈ ℕ. Note that 𝜑𝑛 cannot be 

identically zero since 𝐵 is linearly independent. Suppose that f can be expanded as a linear combination of the orthogonal 

functions 𝜑𝑛, i.e., 

𝑓(𝑥) =  ∑ 𝑐𝑛

∞

𝑛=0

𝜑𝑛(𝑥),            (2) 

where 𝑐𝑛 are the coefficients of 𝜑𝑛 . Now, the problem consists on finding these coefficients. We can use the orthogonality 

of the functions 𝜑𝑛 to search for an explicit formula for 𝑐𝑛. In fact, by taking the inner product ⟨𝑓, 𝜑𝑚⟩ and using the 

orthogonal relation in Eq. (1), we obtain 

⟨𝑓, 𝜑𝑚⟩ = ∫  
𝑏

𝑎

𝑤(𝑥)𝑓(𝑥)𝜑𝑚(𝑥)𝑑𝑥

=
(2)
∑ 

∞

𝑛=0

𝑐𝑛 ∫  
𝑏

𝑎

𝑤(𝑥)𝜑𝑛(𝑥)𝜑𝑚(𝑥)𝑑𝑥
⏟                

(1)

= 𝑐𝑛∥∥𝜑𝑛(𝑥)∥∥
2
⟹ 𝑐𝑛 =

⟨𝑓,𝜑𝑛⟩

∥∥𝜑𝑛(𝑥)∥∥
2 .                    (3)

  

In the context of inner product spaces, we conclude that the coefficients 𝑐𝑛 as defined in Eq. (3) are the orthogonal 

projections of 𝑓 onto the basis functions 𝜑𝑛, as shown in Figure 1 for the first three functions 𝜑0, 𝜑1 and 𝜑2. 

Substituting the coefficients 𝑐𝑛  formula in Eq. (3) into (2) yields 

𝑓(𝑥) = ∑  

∞

𝑛=0

⟨𝑓, 𝜑𝑛⟩

∥∥𝜑𝑛(𝑥)∥∥
2𝜑𝑛(𝑥),                    (4) 

which is a closed expression to expand 𝑓 in an orthogonal series. The series in Eq. (4) is called generalized Fourier series 

for the function 𝑓 on the interval [𝑎, 𝑏], with respect to the orthogonal basis 𝐵 (Brown & Churchill, 2008). The coefficients 

𝑐𝑛 are known as Fourier coefficients. Thus, there are several types of Fourier series expansions depending on the chosen 

basis. If 𝐵 is defined in terms of a trigonometric system (set of orthogonal trigonometric functions), the series in Eq. (4) is 

called trigonometric Fourier series (see subsection 2.2), while if it is defined in terms of the Legendre polynomials, it is 

called Fourier-Legendre series (see subsection 2.3). Similarly, if 𝐵 is defined in terms of the Bessel functions, then it will 

be called Fourier-Bessel series (see subsection 2.4). There are other families of orthogonal functions (e.g., Chebyshev and 

Hermite polynomials) but our goal is to treat only the aforementioned ones. It is worth to mention that in the entire 

discussion 𝐵 is considered to be complete in the sense that 𝑓 is not orthogonal to each basis function in 𝐵. 
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Figure 1 - Geometric interpretation of the coefficients 𝑐𝑛  for the first three basis functions. 

 

Source: Authors. 

 

Before delving into each type of Fourier series considered in this paper, it is necessary to mention how to find an 

orthogonal basis for the generalized Fourier series in Eq. (4). To do this, one can resort to the Sturm-Liouville theory, 

which deals with second-order ODEs of the form 

[𝑝(𝑥)𝑦′]′ + [𝑞(𝑥) + 𝜆𝑟(𝑥)]𝑦 = 0                  (5) 

on some interval [𝑎, 𝑏], satisfying the following homogeneous boundary conditions 

𝛼1𝑦(𝑎) + 𝛼2𝑦
′(𝑎) = 0, 𝛼1

2 + 𝛼2
2 > 0,                                  (6𝑎)

𝛽1𝑦(𝑏) + 𝛽2𝑦
′(𝑏) = 0, 𝛽1

2 + 𝛽2
2 > 0,                                  (6𝑏)

 

where 𝛼1, 𝛼2, 𝛽1, and 𝛽2  are given real constants, 𝜆 is a parameter, and 𝑝, 𝑞 and  𝑟 are given functions. The Eq. (5) together with 

the conditions in Eqs. (6a) and (6b) compose a boundary value problem (BVP) called Sturm-Liouville problem (SLP). A SLP is 

said to be regular if 𝑝, 𝑝′, 𝑞, and 𝑟 are continuous functions on an interval [𝑎, 𝑏], and 𝑝(𝑥), 𝑟(𝑥) > 0 for every 𝑥 in the interval. 

Otherwise, it is called singular. The non-trivial solutions of a SLP are called eigenfunctions and the values of 𝜆 for which an 

eigenfunction exists are called eigenvalues. For each eigenvalue there is only one eigenfunction (except for nonzero constant 

multiples). An interesting result of the Sturm-Liouville theory is that the set of eigenfunctions of a regular SLP corresponding to 

the set of eigenvalues is orthogonal with respect to the weight function 𝑟(𝑥) on the interval [𝑎, 𝑏], i.e., 

∫  
𝑏

𝑎

𝑟(𝑥)𝑦𝑚(𝑥)𝑦𝑛(𝑥)𝑑𝑥 = 0,       𝑚 ≠ 𝑛,                       (7) 

where 𝑦𝑚  and 𝑦𝑛  are eigenfunctions. To see this, let 𝜆𝑚  and 𝜆𝑛  be the corresponding distinct eigenvalues. By assumption, 𝑦𝑚  

and 𝑦𝑛satisfy the Sturm-Liouville equations 

  [𝑝(𝑥)𝑦𝑚
′ ]′ + [𝑞(𝑥) + 𝜆𝑚𝑟(𝑥)]𝑦𝑚 = 0.                           (8)

  [𝑝(𝑥)𝑦𝑛
′ ]′ + [𝑞(𝑥) + 𝜆𝑛𝑟(𝑥)]𝑦𝑛 = 0.                              (9)

 

Multiplying Eq. (8) by yn and Eq. (9) by −𝑦𝑚  and adding the resulting equations gives 

(𝜆𝑚 − 𝜆𝑛)𝑟(𝑥)𝑦𝑚𝑦𝑛 = [(𝑝(𝑥)𝑦𝑛
′ )𝑦𝑚 − (𝑝(𝑥)𝑦𝑚

′ )𝑦𝑛]
′.             (10) 

Integrating both sides of Eq. (10) with respect to x from 𝑎 to 𝑏 yields 

http://dx.doi.org/10.33448/rsd-v12i2.40312
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(𝜆𝑚 − 𝜆𝑛)∫  
𝑏

𝑎

𝑟(𝑥)𝑦𝑚(𝑥)𝑦𝑛(𝑥)𝑑𝑥 = 𝑝(𝑏)[𝑦𝑛
′ (𝑏)𝑦𝑚(𝑏) − 𝑦𝑚

′ (𝑏)𝑦𝑛(𝑏)]

                                                                                         −𝑝(𝑎)[𝑦𝑛
′ (𝑎)𝑦𝑚(𝑎) − 𝑦𝑚

′ (𝑎)𝑦𝑛(𝑎)].               (11)

 

The eigenfunctions 𝑦𝑚  and 𝑦𝑛  satisfy the boundary conditions in Eqs. (6a) and (6b). In particular, for 𝑥 = 𝑎 one can 

obtain the following system of equations 

{
 𝛼1𝑦𝑚(𝑎) + 𝛼2𝑦𝑚

′ (𝑎) = 0,

𝛼1𝑦𝑛(𝑎) + 𝛼2𝑦𝑛
′ (𝑎)   = 0.

 

Since by hypothesis  𝛼1  and  𝛼2 cannot be zero simultaneously, this homogeneous system must have infinite solutions. 

Thus, the determinant of the coefficients must be zero, i.e., 

𝑦𝑛
′ (𝑎)𝑦𝑚(𝑎) − 𝑦𝑚

′ (𝑎)𝑦𝑛(𝑎) = 0.                             (12) 

Similarly, for 𝑥 = 𝑏 it follows that 

𝑦𝑛
′ (𝑏)𝑦𝑚(𝑏) − 𝑦𝑚

′ (𝑏)𝑦𝑛(𝑏) = 0.                           (13) 

Substituting Eqs. (12) and (13) in the right-hand side of Eq. (11) yields the orthogonality relation in Eq. (7) since 𝜆𝑚 ≠

𝜆𝑛. As one can notice in Eq. (11), if 𝑝(𝑎) = 0, then the boundary condition in Eq. (6a) is not required to proof the orthogonality 

relation, provided that 𝑦𝑚, 𝑦𝑛 and their derivatives are bounded at 𝑥 = 𝑎. Similarly, the same is valid for the boundary condition 

in Eq. (6b) when 𝑝(𝑏) = 0. If 𝑝(𝑎) = 𝑝(𝑏) = 0, then no boundary condition at all is required. So, the orthogonality relation 

holds for a singular SLP such that 𝑝(𝑎) = 0 or 𝑝(𝑏) = 0, as the ones involving the differential equations of Legendre and Bessel, 

treated in subsections 2.3 and 2.4, respectively. 

 

2.2 Trigonometric Fourier Series 

The orthogonal set of functions for the trigonometric Fourier series comes from the solution of a two-point BVP 

involving the following linear second-order ODE 

𝑦′′ + 𝜆𝑦 = 0,                              (14) 

with the following periodic boundary conditions 

𝑦(−𝐿) − 𝑦(𝐿) = 0,                              (15𝑎)

𝑦′(−𝐿) − 𝑦′(𝐿) = 0,                              (15𝑏)
 

where 𝐿 > 0 and 𝜆 a real parameter. For 𝜆 > 0, the Eq. (14) is the simple harmonic oscillator differential equation. The BVP 

consisting of Eq. (14) and the periodic boundary conditions in (15) is called periodic Sturm-Liouville problem (Kreyszig et al., 

2011) on the interval [−𝐿, 𝐿]. The eigenvalues and eigenfunctions of this SLP are obtained considering three cases for the 

parameter 𝜆: 𝜆 = 0, 𝜆 = −𝛼2, and 𝜆 = 𝛼2, with 𝛼 > 0. For 𝜆 < 0, the only solution is 𝑦 = 0, which is not an eigenfunction 

(Zill, 2022). Suppose that 𝜆 = 0. Here, Eq. (14) reduces to 𝑦′′ = 0, whose solution is given by 

𝑦 = 𝑐1𝑥 + 𝑐2,                       (16) 

where 𝑐1  and 𝑐2  are arbitrary constants. Using Eq. (15a) in Eq. (16) yields 

−𝑐1𝐿 + 𝑐2 = 𝑐1𝐿 + 𝑐2 ⟺ 2𝑐1𝐿 = 0 ⟺ 𝑐1 = 0.                       (17) 

It follows from Eqs. (16) and (17) that the eigenfunctions are 𝑦 = 𝑐2 ≠ 0. One can choose any nonzero constant but it 

is convenient to define 𝑐2 = 1/2 such that 

𝑦 =
1

2
                                 (18) 

is the desired eigenfunction. The reasons behind this choice will be explained at the end of this subsection. Finally, suppose that 

𝜆 = 𝛼2. Then, Eq. (14) can be rewritten as 

𝑦′′ + 𝛼2𝑦 = 0 

http://dx.doi.org/10.33448/rsd-v12i2.40312
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whose solution is given by 

𝑦 = 𝑐1 cos(𝛼𝑥) + 𝑐2 sin(𝛼𝑥),                          (19) 

such that 

𝑦′ = −𝑐1𝛼 sin(𝛼𝑥) + 𝑐2𝛼 cos(𝛼𝑥).                         (20) 

Using Eq. (15a) in Eq. (19) yields 

2𝑐2 sin(𝛼𝐿) = 0.                             (21) 

If 𝑐1 = 0 and 𝑐2 ≠ 0, then it follows from Eq. (21) that 

𝛼𝐿 = 𝑛𝜋 ⟹ 𝛼 =
𝑛𝜋

𝐿
, 𝑛 = 1,2, …                      (22) 

The Eq. (22) is also obtained when 𝑐1 ≠ 0 and 𝑐2 = 0. Considering both cases in Eq. (19), one can notice that there are 

two linearly independent eigenfunctions corresponding to each eigenvalue, 

𝜓𝑛(𝑥) = sin (
𝑛𝜋𝑥

𝐿
) , 𝑛 = 1,2, …                                       (23𝑎) 

and 

𝜙𝑛(𝑥) = cos (
𝑛𝜋𝑥

𝐿
) , 𝑛 = 1,2, …                                     (23𝑏) 

From Eqs. (18), (23a), and (23b) one can define a set for the eigenfunctions of this SLP, 

𝐵 = {
1

2
, cos (

𝜋𝑥

𝐿
) , cos (

2𝜋𝑥

𝐿
) ,… , sin (

𝜋𝑥

𝐿
) , sin (

2𝜋𝑥

𝐿
) ,… } 

which is an orthogonal set in [−𝐿, 𝐿] with respect to the inner product of Eqs. (1) using 𝑤(𝑥) = 1, 𝑎 = −𝐿, and 𝑏 = 𝐿. In 

fact, taking the inner product between 𝜓𝑛 and 𝜙𝑛, we have 

∫  
𝐿

−𝐿

cos (
𝑚𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥 = {

0, 𝑚 ≠ 𝑛
𝐿, 𝑚 = 𝑛

,                                    (24𝑎)

∫  
𝐿

−𝐿

sin (
𝑚𝜋𝑥

𝐿
) sin (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥 = {

0, 𝑚 ≠ 𝑛
𝐿, 𝑚 = 𝑛

,                                       (24𝑏)

 

for 𝑚, 𝑛 ∈ ℕ∗ and 

∫  
𝐿

−𝐿

cos (
𝑚𝜋𝑥

𝐿
) sin (

𝑛𝜋𝑥

𝐿
)𝑑𝑥 = 0 

for all integers 𝑚 and 𝑛. The orthogonality between the eigenfunction 1/2 and the other eigenfunctions in 𝐵 follows from a 

simple integration and, therefore, is omitted. Using the orthogonal basis 𝐵 one can expand a given function 𝑓 defined on the 

interval [−𝐿, 𝐿] as a series of eigenfunctions, as follows 

𝑓(𝑥) =
𝑎0
2
+∑  

∞

𝑛=1

[𝑎𝑛 cos (
𝑛𝜋𝑥

𝐿
) + 𝑏𝑛 sin (

𝑛𝜋𝑥

𝐿
)]                    (25) 

whose coefficients are given by 

𝑎𝑛     =
1

𝐿
∫  
𝐿

−𝐿

𝑓(𝑥)cos (
𝑛𝜋𝑥

𝐿
) 𝑑𝑥,     𝑛 = 0,1,2, …,                        (26𝑎)

𝑏𝑛     =
1

𝐿
∫  
𝐿

−𝐿

𝑓(𝑥)sin (
𝑛𝜋𝑥

𝐿
) 𝑑𝑥,     𝑛 = 1,2, …                            (26𝑏)

 

The 1/𝐿 factor in Eqs. (26a) and (26b) comes from the squared norm of the cosines and sines as indicated in Eqs. (24a) 

and (24b). The series in Eq. (25) is called trigonometric Fourier series of 𝑓 on [−𝐿, 𝐿], while the coefficients obtained from Eqs. 

(26a) and (26b) are referred to as Euler-Fourier formulas (Zill, 2022). There is no reason to believe that the series in the right-

hand side of Eq. (25) converges to 𝑓. Fourier was the first to assert, in his book Analytical Theory of Heat (1822), that an arbitrary 

function defined on the interval (−𝜋, 𝜋) could be expressed as a trigonometric series. He provided the proof for some simple 
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functions that he needed to study the conduction of heat but doesn’t develop a rigorous proof for the general case. The problem 

of the representation of a function by a trigonometric series remained open for more than half a century. As mentioned in 

subsection 1.1, only in 1829 that Dirichlet established the conditions of convergence for the Fourier series. He stated that a 

bounded piecewise continuous function 𝑓 defined on (−𝜋, 𝜋) converges to 𝑓(𝑥) at every point 𝑥 at which 𝑓 is continuous and 

that in a point of discontinuity 𝑥 = 𝑥0, 𝑓 converges to 

𝑓(𝑥0
+) + 𝑓(𝑥0

−)

2
, 

that corresponds to the mean of the limits of 𝑓 just before and after the discontinuity. Due to this fact, some texts use the symbol 

~ rather than = to denote a correspondence between 𝑓 and its series expansion (Zill, 2022). 

It is possible to obtain equivalent representations of the trigonometric Fourier series that play an important role in its 

physical interpretation. In fact, if 𝑓 is a periodic function of time t with period 𝑇 = 2𝐿 and fundamental angular frequency 𝜔0 =

2𝜋/𝑇, then 𝐵 can be interpreted as a set of sinusoids whose frequencies are integer multiples of each other, i.e., they are 

harmonically related (Oppenheim et al., 1997). This interpretation is very useful since it allows one to use the trigonometric 

Fourier series to determine the frequency components of a signal (a function of time). In this sense, until the end of this 

subsection, it is considered that 𝑓 is a periodic signal of period 𝑇 = 2𝐿. In particular, there is the complex exponential Fourier 

series. Before we start, recall that cosines and sines can be written in terms of complex exponential functions, as follows 

cos(𝑛𝜔0𝑡) =
exp(𝑗𝑛𝜔0𝑡) + exp(−𝑗𝑛𝜔0𝑡)

2
,                                (27)

sin(𝑛𝜔0𝑡) =
exp(𝑗𝑛𝜔0𝑡) − exp(−𝑗𝑛𝜔0𝑡)

2𝑗
,                                (28)

 

where 𝑗 denotes the imaginary unit. Substituting Eqs. (27) and (28) in Eq. (25) yields 

𝑓(𝑡) =
𝑎0
2
+∑  

∞

𝑛=1

[𝑎𝑛cos (𝑛𝜔0𝑡) + 𝑏𝑛sin (𝑛𝜔0𝑡)]

=
𝑎0
2⏟
𝑐0

+∑  

∞

𝑛=1

[(
𝑎𝑛 − 𝑗𝑏𝑛

2
)

⏟      
𝑐𝑛

exp (𝑗𝑛𝜔0𝑡) + (
𝑎𝑛 + 𝑗𝑏𝑛

2
)

⏟      

𝑐𝑛
¯

exp (−𝑗𝑛𝜔0𝑡)]

= 𝑐0 +∑  

∞

𝑛=1

[𝑐𝑛exp (𝑗𝑛𝜔0𝑡) + 𝑐𝑛
¯
exp (−𝑗𝑛𝜔0𝑡)]

= 𝑐0 +∑  

∞

𝑛=1

[𝑐𝑛exp (𝑗𝑛𝜔0𝑡) + 𝑐−𝑛exp (−𝑗𝑛𝜔0𝑡)]since𝑐𝑛
¯
= 𝑐−𝑛

= ∑  

∞

𝑛=−∞

𝑐𝑛 exp(𝑗𝑛𝜔0𝑡),                                                                      (29)

 

which is called the complex exponential Fourier series. The formula for the coefficients 𝑐𝑛  in Eq. (29) follows immediately from 

Eqs. (26a) and (26b), 

𝑐𝑛 =
𝑎𝑛
2
− 𝑗

𝑏𝑛
2

=
1

𝑇
∫  
−𝑇/2

𝑇/2

𝑓(𝑡)[cos (𝑛𝜔0𝑡) − 𝑗sin (𝑛𝜔0𝑡)]𝑑𝑡

=
1

𝑇
∫  
−
𝑇
2

𝑇
2

𝑓(𝑡) exp(−𝑗𝑛𝜔0𝑡)𝑑𝑡 .                  (30)

 

In this paper, the plots of the magnitudes and phases of 𝑐𝑛   in Eq. (30) versus 𝑛𝜔0 are collectively referred to as 

bilateral spectrum since 𝑛 ∈ ℤ. Some examples of this spectrum are presented in section 3. Another very useful alternative 

http://dx.doi.org/10.33448/rsd-v12i2.40312


Research, Society and Development, v. 12, n. 2, e28712240312, 2023 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v12i2.40312 
 

 

9 

representation of the trigonometric Fourier series is the polar Fourier series. To obtain this representation, it is sufficient 

to rewrite the linear combination of cosines and sines in Eq. (25) as follows 

𝑎𝑛 cos(𝑛𝜔0𝑡) + 𝑏𝑛 sin(𝑛𝜔0𝑡) = 𝐴𝑛 cos(𝑛𝜔0𝑡 + 𝜙𝑛) ,                     (31) 

where 

𝐴𝑛 = √𝑎𝑛
2 + 𝑏𝑛

2                             (32) 

and 

𝜙𝑛 = −arctan (
𝑏𝑛
𝑎𝑛
) +

𝜋

2
(1 − sgn(𝑎𝑛)),                  (33) 

with 𝑛 ∈ ℕ∗. The symbol sgn stands for the sign function and the second term in the right hand side of Eq. (33) is a quadrant 

correction. Substituting Eq. (31) in Eq. (25) yields 

𝑓(𝑡) = 𝐴0 +∑  

∞

𝑛=1

𝐴𝑛 cos(𝑛𝜔0𝑡 + 𝜙𝑛),                                       (34) 

where 𝐴0 = 𝑎0/2. The plots of Eqs. (32) and (33) versus 𝑛𝜔0  are collectively referred to as unilateral spectrum since 𝑛 ∈ ℕ 

(see section 3 for practical examples). The polar Fourier series in Eq. (34) can be used to provide a 3D representation of the 

trigonometric Fourier series of a function 𝑓, which is one of the main graphical features of Freya, as described in Section 3. 

 

2.3 Fourier-Legendre Series 

For the case of the Fourier-Legendre series, the corresponding Sturm-Liouville problem, on the interval [−1,1], is 

obtained by setting 𝑝(𝑥) = 1 − 𝑥2, 𝑞(𝑥) = 0, 𝑟(𝑥) = 1 and 𝜆 = 𝑛(𝑛 + 1), with 𝑛 ∈ ℕ, in Eq. (5). Since 𝑝(1) = 𝑝(−1) = 0, 

no boundary conditions are needed, as mentioned in the end of subsection 2.1. Substituting these definitions in Eq. (5), it reduces 

to the Legendre’s differential equation, 

[(1 − 𝑥2)𝑦′]′ + 𝑛(𝑛 + 1)𝑦 = 0.                         (35) 

It is well known that the Legendre polynomials 𝑃𝑛(𝑥) are the solutions of Eq. (35) related to the eigenvalues 𝜆𝑛 =

𝑛(𝑛 + 1). In this sense, they are the eigenfunctions of this SLP and, therefore, form a orthogonal set on the interval [−1,1] with 

respect to the inner product in Eq. (1) using 𝑤(𝑥) = 1, 𝑎 = −1, and 𝑏 = 1. So, 

⟨𝑃𝑚, 𝑃𝑛⟩ = ∫  
1

−1

𝑃𝑚(𝑥)𝑃𝑛(𝑥)𝑑𝑥 = {
0,     𝑚 ≠ 𝑛
2

2𝑛 + 1
,     𝑚 = 𝑛

.                       (36) 

To demonstrate Eq. (36), suppose initially that 𝑚 ≠ 𝑛 and let 𝑃𝑛(𝑥) and 𝑃𝑚(𝑥) be Legendre polynomials. Then, 

they must satisfy Eq. (35), that is, 

(1 − 𝑥2)𝑃𝑚
′′(𝑥) − 2𝑥𝑃𝑚

′ (𝑥) + 𝑚(𝑚 + 1)𝑃𝑚(𝑥) = 0,                         (37)

(1 − 𝑥2)𝑃𝑛
′′(𝑥) − 2𝑥𝑃𝑛

′(𝑥) + 𝑛(𝑛 + 1)𝑃𝑛(𝑥) = 0.                             (38)
 

Multiplying Eq. (37) by 𝑃𝑛(𝑥) and Eq. (38) by 𝑃𝑚(𝑥), one can obtain 

(1 − 𝑥2)𝑃𝑛(𝑥)𝑃𝑚
′′(𝑥) − 2𝑥𝑃𝑛(𝑥)𝑃𝑚

′ (𝑥) + 𝑚(𝑚 + 1)𝑃𝑚(𝑥)𝑃𝑛(𝑥) = 0,                (39)

(1 − 𝑥2)𝑃𝑚(𝑥)𝑃𝑛
′′(𝑥) − 2𝑥𝑃𝑚(𝑥)𝑃𝑛

′(𝑥) + 𝑛(𝑛 + 1)𝑃𝑚(𝑥)𝑃𝑛(𝑥) = 0.                 (40)
 

Subtracting Eq. (40) from Eq. (39) yields 

(1 − 𝑥2)[𝑃𝑛(𝑥)𝑃𝑚
′′(𝑥) − 𝑃𝑚(𝑥)𝑃𝑛

′′(𝑥)] − 2𝑥[𝑃𝑛(𝑥)𝑃𝑚
′ (𝑥) − 𝑃𝑚(𝑥)𝑃𝑛

′(𝑥)]

                                                       +𝑃𝑚(𝑥)𝑃𝑛(𝑥)[𝑚(𝑚 + 1) − 𝑛(𝑛 + 1)] = 0                              (41𝑎)  
 

or 

𝑑

𝑑𝑥
[(1 − 𝑥2)(𝑃𝑛(𝑥)𝑃𝑚

′ (𝑥) −𝑃𝑚(𝑥)𝑃𝑛
′(𝑥))]

+𝑃𝑚(𝑥)𝑃𝑛(𝑥)[𝑚(𝑚 + 1) − 𝑛(𝑛 + 1)] = 0.                     (41𝑏)
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Solving Eq. (41b) for 𝑃𝑚(𝑥)𝑃𝑛(𝑥) yields 

𝑃𝑚(𝑥)𝑃𝑛(𝑥) = −
1

𝑚(𝑚 + 1) − 𝑛(𝑛 + 1)

𝑑

𝑑𝑥
[(1 − 𝑥2)(𝑃𝑛(𝑥)𝑃𝑚

′ (𝑥) − 𝑃𝑚(𝑥)𝑃𝑛
′(𝑥))].                (42) 

Integrating both sides of Eq. (42) with respect to 𝑥 from −1 to 1 gives 

∫  
1

−1

𝑃𝑚(𝑥)𝑃𝑛(𝑥)𝑑𝑥 = −
(1 − 𝑥2)(𝑃𝑛(𝑥)𝑃𝑚

′ (𝑥) − 𝑃𝑚(𝑥)𝑃𝑛
′(𝑥))

𝑚(𝑚 + 1) − 𝑛(𝑛 + 1)
|
−1

1

= 0,                     (43) 

which concludes the first part of the demonstration. For the second part, where 𝑚 = 𝑛, it is convenient to use the generating 

function of the Legendre polynomials, i.e., 

(1 − 2𝑥𝑡 + 𝑡2)−1/2 = ∑  

∞

𝑛=0

𝑃𝑛(𝑥)𝑡
𝑛 , |𝑥| ≤ 1, |𝑡| < 1.                               (44) 

Squaring both sides of Eq. (44) yields 

(1 − 2𝑥𝑡 + 𝑡2)−1 = ∑  

∞

𝑛=0

[𝑃𝑛(𝑥)]
2𝑡2𝑛 .                             (45) 

Integrating both sides of Eq. (45) with respect to 𝑥 from −1 to 1 gives 

∑ 

∞

𝑛=0

(∫  
1

−1

[𝑃𝑛(𝑥)]
2𝑑𝑥) 𝑡2𝑛 = ∫  

1

−1

𝑑𝑥

1 − 2𝑥𝑡 + 𝑡2

= −
log(1 − 2𝑥𝑡 + 𝑡2)

2𝑡
|
−1

1

= −
1

2𝑡
[log (1 − 2𝑡 + 𝑡2) − log (1 + 2𝑡 + 𝑡2)]

=
1

𝑡
[log (1 + 𝑡) − log (1 − 𝑡)]

= ∑  

∞

𝑛=1

(−1)𝑛+1 + 1

𝑛
𝑡𝑛−1

= ∑  

∞

𝑛=0

(
2

2𝑛 + 1
) 𝑡2𝑛 .                                        (46)

 

From the comparison of the coefficients in Eq. (46), one can infer that 

∫  
1

−1

[𝑃𝑛(𝑥)]
2𝑑𝑥 =

2

2𝑛 + 1
,                              (47) 

completing the demonstration of Eq. (36). Substituting Eq. (47) in Eq. (3) one can obtain the Fourier coefficients for the Fourier-

Legendre series, given by 

𝑐𝑛 =
2𝑛 + 1

2
∫  
1

−1

𝑓(𝑥)𝑃𝑛(𝑥)𝑑𝑥.                      (48) 

With the coefficients in Eq. (48) and defining the orthogonal basis as 𝐵 = {𝑃𝑛(𝑥)}𝑛=0
∞ , the Fourier-Legendre series of a 

function 𝑓 defined on the interval [−1,1] can be written as 

𝑓(𝑥) = ∑  

∞

𝑛=0

𝑐𝑛𝑃𝑛(𝑥).                   (49) 

It is worthwhile to mention that the orthogonality of the Legendre polynomials can be extended to an arbitrary interval 

[𝑎, 𝑏] if one perform some shifting and scaling operations on 𝑃𝑛(𝑥), i.e., 

𝑃𝑛
𝑎,𝑏(𝑥) = √

2

𝑏 − 𝑎
𝑃𝑛 (

2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
),                        (50) 
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Since 

∫  
𝑏

𝑎

𝑃𝑛
𝑎,𝑏(𝑥)𝑃𝑚

𝑎,𝑏(𝑥)𝑑𝑥 =
2

𝑏 − 𝑎
∫  
𝑏

𝑎

𝑃𝑛 (
2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
) 𝑃𝑚 (

2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
)𝑑𝑥

= ∫  
1

−1

𝑃𝑛(𝑢)𝑃𝑚(𝑢)𝑑𝑢
⏟            

(36)

, 𝑢 =
2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎

= {

0, 𝑚 ≠ 𝑛
2

2𝑛 + 1
, 𝑚 = 𝑛

 

Eq. (50) was used to implement the Fourier-Legendre series in Freya for a bounded piecewise continuous function 𝑓 

defined on an interval [𝑎, 𝑏]. In that case, Eqs. (48) and (49) can be rewritten as follows 

𝑓(𝑥) = ∑  

∞

𝑛=0

𝑐𝑛
𝑎,𝑏𝑃𝑛

𝑎,𝑏(𝑥) 

where 

𝑐𝑛
𝑎,𝑏 =

2𝑛 + 1

2
∫  
𝑏

𝑎

𝑓(𝑥)𝑃𝑛
𝑎,𝑏(𝑥)𝑑𝑥. 

 

2.3.1 Bonnet’s recursion formula 

The Legendre polynomials satisfy several recurrence formulas that are very useful for computational purposes or to 

proof some of their properties. In particular, there is the Bonnet’s recursion formula which is stated as 

(𝑛 + 1)𝑃𝑛+1(𝑥) = (2𝑛 + 1)𝑥𝑃𝑛(𝑥) − 𝑛𝑃𝑛−1(𝑥), ∀𝑛 ∈ ℕ
∗.                               (51) 

To demonstrate Eq. (51) it is necessary to use the generating function, rewritten here for convenience 

(1 − 2𝑥𝑡 + 𝑡2)−1/2 = ∑  

∞

𝑛=0

𝑃𝑛(𝑥)𝑡
𝑛 . 

Differentiating both sides of the generating function with respect to t, one can obtain 

(1 − 2𝑥𝑡 + 𝑡2)−
1
2⏟          

(44)

(1 − 2𝑥𝑡 + 𝑡2)−1(𝑥 − 𝑡) = ∑  

∞

𝑛=1

𝑛𝑡𝑛−1𝑃𝑛(𝑥)                         (52𝑎) 

or 

(𝑥 − 𝑡)∑  

∞

𝑛=0

𝑃𝑛(𝑥)𝑡
𝑛 = (1 − 2𝑥𝑡 + 𝑡2)∑  

∞

𝑛=1

𝑛𝑡𝑛−1𝑃𝑛(𝑥).                          (52𝑏) 

Simplifying Eq. (52b) yields 

∑ 

∞

𝑛=2

[𝑥𝑃𝑛(𝑥) − 𝑃𝑛−1(𝑥)]𝑡
𝑛 =∑  

∞

𝑛=2

[(𝑛 + 1)𝑃𝑛+1(𝑥) − 2𝑥𝑛𝑃𝑛(𝑥) + (𝑛 − 1)𝑃𝑛−1(𝑥)]𝑡
𝑛. 

Since the powers of t and the limits of summation in Eq. (53) are the same, one can obtain the Bonnet’s recursion 

formula by equating their coefficients, 

𝑥𝑃𝑛(𝑥) − 𝑃𝑛−1(𝑥) = (𝑛 + 1)𝑃𝑛+1(𝑥) − 2𝑥𝑛𝑃𝑛(𝑥) + (𝑛 − 1)𝑃𝑛−1(𝑥)                    (54𝑎) 

or 

(𝑛 + 1)𝑃𝑛+1(𝑥) = (2𝑛 + 1)𝑥𝑃𝑛(𝑥) − 𝑛𝑃𝑛−1(𝑥).                          (54𝑏) 

The Boonet’s recursion formula was used in the development of Freya to calculate the Legendre polynomials (𝑛 ≥ 2) 

from 𝑃0(𝑥) = 1 and 𝑃1(𝑥) = 𝑥. 
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2.4 Fourier-Bessel Series 

Consider the parametric Bessel differential equation, 

𝑥2𝑦′′ + 𝑥𝑦′ + (𝛼2𝑥2 − 𝑛2)𝑦 = 0,                𝛼 > 0,                          (55𝑎) 

with a fixed integer 𝑛 ≥ 0. This equation can be rewritten as a Sturm-Liouville equation by setting 𝑝(𝑥) = 𝑥, 𝑞(𝑥) =

−
𝑛2

𝑥
, 𝑟(𝑥) = 𝑥and 𝜆 = 𝛼2 in Eq. (5), yielding 

(𝑥𝑦′)′ + (𝛼2𝑥 −
𝑛2

𝑥
)𝑦 = 0.                                (55𝑏) 

Since Eq. (55) is a second-order homogeneous linear differential equation, the general solution is a linear combination 

of two linearly independent solutions, 

𝑦 = 𝑐1𝐽𝑛(𝛼𝑥) + 𝑐2𝑌𝑛(𝛼𝑥),             𝑛 = 0,1,2, …                      (56) 

where 𝐽𝑛(𝛼𝑥) and 𝑌𝑛(𝛼𝑥) are scaled versions of the Bessel functions of the first and second kinds, and 𝑐1  and 𝑐2  are constants. 

Since the functions 𝑌𝑛(𝛼𝑥) are not bounded at 𝑥 = 0, we will consider only the functions Jn(αx) in such a way that Eq. (56) is 

rewritten as 

𝑦 = 𝐽𝑛(𝛼𝑥),                𝑛 = 0,1,2, …                  (57) 

Since 𝑝(0) = 0, the boundary condition in equation (6a) is not required. On the other hand, given a fixed real number 

𝑏 one can form a Sturm-Liouville problem on [0, 𝑏] using Eq. (55b) together with the following boundary condition at 𝑥 = 𝑏, 

𝛽1𝑦(𝑏) + 𝛽2𝑦
′(𝑏) = 0. 

There are three cases for this boundary condition but in this discussion only the one in which 𝛽1 = 1 and 𝛽2 = 0 is 

considered. This will simplify the formula for the coefficients in the Fourier-Bessel series. So, the solutions in Eq. (57) must 

satisfy 

𝐽𝑛(𝛼𝑏) = 0.                                 (58) 

It can be shown that Eq. (58) has an infinite number of positive roots 𝑥𝑖  such that 

𝛼𝑏 = 𝑥𝑖 ⟹ 𝛼𝑖 =
𝑥𝑖
𝑏
,                     𝑖 = 1,2, … 

In this sense, the eigenvalues are positive and given by 𝜆𝑖 = 𝛼𝑖
2 = 𝑥𝑖

2/𝑏2 and the corresponding eigenfunctions are 

𝐽𝑛(𝛼𝑖𝑥). Thus, the set 𝐵 = {𝐽𝑛(𝛼𝑖𝑥)}𝑖=1
∞  is orthogonal with respect to the inner product of Eq. (1) using 𝑤(𝑥) = 𝑟(𝑥) = 𝑥 on an 

interval [0, 𝑏], i.e., 

∫  
𝑏

0

𝑥𝐽𝑛(𝛼𝑖𝑥)𝐽𝑛(𝛼𝑗𝑥)𝑑𝑥 = {

0,     𝑖 ≠ 𝑗

𝑏2

2
𝐽𝑛+1
2 (𝛼𝑖𝑏),     𝑖 = 𝑗

.                    (59) 

To obtain Eq. (59) set 𝑢 = 𝐽𝑛(𝛼𝑖𝑥) and 𝑣 = 𝐽𝑛(𝛼𝑗𝑥). So, it follows from Eq. (55a) that 

𝑥2𝑢′′ + 𝑥𝑢′ + (𝛼𝑖
2𝑥2 − 𝑛2)𝑢 = 0,                              (60)

𝑥2𝑣′′ + 𝑥𝑣′ + (𝛼𝑗
2𝑥2 − 𝑛2)𝑣 = 0.                              (61)

 

Multiplying Eq. (60) by 𝑣/𝑥 and (61) by 𝑢/𝑥 and subtracting the latter from the former, yields 

(𝛼𝑗
2 − 𝛼𝑖

2)𝑥𝑢𝑣 = −
𝑑

𝑑𝑥
[𝑥(𝑣𝑢′ − 𝑢𝑣′)].                    (62) 

Integrating both sides of Eq. (62) with respect to 𝑥 from 0 to 𝑏, gives 

∫  
𝑏

0

𝑥𝐽𝑛(𝛼𝑖𝑥)𝐽𝑛(𝛼𝑗𝑥)𝑑𝑥 = −𝑏
𝐽𝑛(𝛼𝑖𝑏)𝛼𝑗𝐽𝑛

′ (𝛼𝑗𝑏) − 𝐽𝑛(𝛼𝑗𝑏)𝛼𝑖𝐽𝑛
′ (𝛼𝑖𝑏)

𝛼𝑗
2 − 𝛼𝑖

2 .                    (63) 

The Eq. (63) vanishes when 𝑖 ≠ 𝑗 since 𝐽𝑛(𝛼𝑖𝑏) = 𝐽𝑛(𝛼𝑗𝑏) = 0. For 𝑖 = 𝑗, it reduces itself to an indeterminate form. 

So, to overcome this problem one should consider a limit where 𝛼𝑖 → 𝛼𝑗 and then apply the L’Hospital’s rule, as follows 
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∫  
𝑏

0

𝑥𝐽𝑛(𝛼𝑖𝑥)𝐽𝑛(𝛼𝑗𝑥)𝑑𝑥 = −𝑏 𝑙𝑖𝑚
𝛼𝑗→𝛼𝑖

 
𝐽𝑛(𝛼𝑖𝑏)𝛼𝑗𝐽𝑛

′ (𝛼𝑗𝑏) − 𝐽𝑛(𝛼𝑗𝑏)𝛼𝑖𝐽𝑛
′ (𝛼𝑖𝑏)

𝛼𝑗
2 − 𝛼𝑖

2

= −𝑏 𝑙𝑖𝑚
𝛼𝑗→𝛼𝑖

 
−𝛼𝑖𝐽𝑛(𝛼𝑗𝑏)𝐽𝑛

′ (𝛼𝑖𝑏)

𝛼𝑗
2 − 𝛼𝑖

2

= −𝑏2 𝑙𝑖𝑚
𝛼𝑗→𝛼𝑖

 
−𝛼𝑖𝐽𝑛

′ (𝛼𝑗𝑏)𝐽𝑛
′ (𝛼𝑖𝑏)

2𝛼𝑗

=
𝑏2

2
[𝐽𝑛
′ (𝛼𝑖𝑏)]

2

=
𝑏2

2
[𝐽𝑛+1(𝛼𝑖𝑏)]

2,

 

completing the proof of Eq. (59). Therefore, the Fourier-Bessel series of a function 𝑓 defined on the interval [0, 𝑏] is given by 

𝑓(𝑥) =∑  

∞

𝑖=1

𝑐𝑖𝐽𝑛(𝛼𝑖𝑥), 

where 

𝑐𝑖 =
2

𝑏2𝐽𝑛+1
2 (𝛼𝑖𝑏)

∫  
𝑏

0

𝑥𝐽𝑛(𝛼𝑖𝑥)𝑓(𝑥)𝑑𝑥 

are the series coefficients. 

 

3. Results and Discussion - Freya 

Freya is an educational software package developed in MATLAB® with a graphical user interface (GUI) to provide a 

friendly and visual approach for the subject of generalized Fourier series in lectures on signal processing, linear algebra, and 

ordinary differential equations, to name just a few. It is designed to help students to develop intuition and to understand the 

underlying idea of the subject before delving into mathematics, which can be quite useful for those who are seeing the subject 

for the first time. 

 

3.1 Overview of Freya Interface 

Figure 2 shows the main window of Freya, which is divided into two panels: the left one (Function Configuration) 

allows the users to set up the functions that will be expanded in a generalized Fourier series, while the right one (Fourier Series 

Visualization) is for the visualization of both the provided function and its Fourier series along with the coefficients. 
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Figure 2 - The startup screen of Freya, a MATLAB GUI-based tool designed to be a learning aid system for students as well as 

for teaching. 

 

Source: Authors. 

 

3.1.1 Function Configuration 

The widgets in Function Configuration panel are used to specify the functions to be expanded in any of the three specific 

cases of the generalized Fourier series discussed in Section 2. The user has to inform the number of functions in the “Number of 

Functions” spinner, which goes from 1 up to 10. By pressing the “Confirm” button, some widgets are enabled such as the 

“Selected Function”, “Orthogonal Expansion”, and “Series Coefficients” drop-down menus, as illustrated in Figure 3a. 

 

Figure 3 - The Function Configuration panel has several features that allow the user to set up a function and the corresponding 

series expansion. 

 

(a) When the user press the “Confirm” button, some widgets of 
the panel are enabled. 

(b) The user can specify if the function is 
periodic by using the “Is a periodic 

function ?” switch. 

Source: Authors. 

 

The first one is filled with integers from 1 up to the number of functions, allowing the user to set up a specific function. 

The second one contains a list of available Fourier series expansions, which in Freya’s current version are the trigonometric 

Fourier series, Fourier-Legendre series, and Fourier-Bessel series, as indicated in Figure 4a. The third one is a list of the 

coefficients that is updated based on the chosen series since each one has its Fourier coefficients; Figure 4b shows the coefficients 

for the trigonometric case. 
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Figure 4 - These drop-down menus allow the user to choose the Fourier series for which the function will be expanded and the 

associated coefficients to be shown in the lower plot of the visualization panel. 

 

(a) Drop-down menu showing the available  

Fourier series expansions. 

(b) Drop-down menu with the coefficients 

for the trigonometric case. 

Source: Authors. 

 

An interesting feature is that Freya can handle periodic functions. The users can configure this property in the “Is a 

periodic function?” switch, which is also enabled with the drop-down menus just described. As depicted in Figures 3a and 3b, 

by choosing “Yes” the red lamp becomes green and the “Number of Periods” spinner is enabled to determine the number of 

periods to be shown in the upper plot of the visualization panel. After this, the user should fill the “Interval Length” (or “Period” 

when the function is periodic) field and press the “Apply” button to enable the “Function Segment” sub-panel, as shown in 

Figure 5. 

 

Figure 5 - The Function Segment sub-panel allows the user to set up each segment by specifying the function rule and its 

corresponding interval. 

 

Source: Authors. 

 

As noticed in Figure 5, this sub-panel allows the user to set up a function segment by entering the function rule (in the 

x variable) through the “Function (x)” field and the corresponding interval in the “Lower Limit” and “Upper Limit” fields. The 

provided function segment is applied by pressing the “Add” button. Each time this button is pressed, an image is shown at the 

bottom to remind the user of all function segments provided so far. If for any reason the user provides a lower limit that is greater 

than the upper limit, a warning message arises, as can be seen in Figure 6a. An error message appears when the user provides a 

function rule that is not in the x variable, as indicated in Figure 6b. 

 

http://dx.doi.org/10.33448/rsd-v12i2.40312


Research, Society and Development, v. 12, n. 2, e28712240312, 2023 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v12i2.40312 
 

 

16 

Figure 6 - Some dialog boxes that an user can experience using Freya. 

 

(a) Warning dialog box that arises when the user 

provides a lower limit greater than the upper limit of 

a function segment 

(b) Warning dialog box that arises when 

the user provides a function rule that is not 

in the x variable 

Source: Authors. 

 

The user can delete a specific function using the “Delete Function” button in Figure (3a) or can delete all functions 

using the “Clear” button in the “Function Configuration” panel, at the bottom of Figure 2. 

 

3.1.2 Fourier Series Visualization 

In the upper plot of the Fourier Series Visualization the user can see the provided function and its corresponding Fourier 

series expansion overlaid on the same plot. The number of terms of the partial sums can be changed using the “Number of Terms” 

slider bar, which goes from 1 up to 100, as depicted in Figure 7. The lower plot shows the coefficients indicated in the “Ser ies 

Coefficients” drop-down menu. For the trigonometric case, the coefficients compose a spectrum which covers both amplitude 

and phase. The following subsection discuss the Freya functionality for a simple example that will clarify how this panel works. 

 

Figure 7 - In the Fourier Series Visualization panel the user can see the plot of both the provided function and the chosen Fourier 

series expansion in the upper plot, while the lower plot contains the coefficients chosen in the “Series Coefficients” drop-down 

menu. The number of terms of the partial sums of the expansion can be changed using the “Number of Terms” slider bar. 

 

Source: Authors. 
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3.2 Using the Tool 

In this subsection, the use of Freya is presented through its application to common functions such as square, triangle, 

and sawtooth waves. Each of these functions is expanded using the three specific cases of the generalized Fourier series described 

in Section 2. For the trigonometric case, a description of the functions in terms of their frequency components is given by using 

both unilateral and bilateral spectrum. 

Figure 8 shows Freya for a periodic square wave of period 𝑇 = 2 which has the value 1 on the interval (0,1) and the 

value −1 on the interval (1,2). At the Fourier Series Visualization panel there are two plots, the upper one is the trigonometric 

Fourier series representation (in blue) of the periodic square wave (in red) considering only the first five terms of the series, as 

set up by the user in the “Number of Terms” slider bar. The lower one is the unilateral amplitude spectrum since this option was 

selected in the “Series Coefficients” drop-down menu. The number of harmonics shown by the spectrum is the same as the 

number of terms. Note that the lower frequencies are the most important in the composition of the provided function since as n 

goes to infinity the amplitude tends to zero. Also, note that only three periods are shown in the upper plot but the user can change 

this using the “Number of Periods” spinner. 

 

Figure 8 - Freya’s “Fourier Series Visualization” panel showing the trigonometric Fourier series of a periodic square wave of 

period 𝑇 = 2 for the first 5 terms. 

 

(a) Unilateral Amplitude Spectrum (b) Unilateral Phase Spectrum 

Source: Authors. 

 

To obtain the unilateral spectrum depicted in Figure 8 one must use equations (32) and (33), which in turn requires the 

trigonometric Fourier series coefficients of the periodic square wave. Sometimes the computation of the coefficients can be 

cumbersome but symmetry can be used as an aid to simplify the integration process. For example, since the considered periodic 

square wave is an odd function, it follows that 𝑎𝑛 = 0 for 𝑛 ≥ 0. In this sense, only the 𝑏𝑛  coefficients need to be determined by 

using equation (26b). So, the coefficients of the periodic square wave are given by 

𝑎𝑛 = 0,              𝑛 = 0,1,2, …,                              (64)

𝑏𝑛 =
2

𝑛𝜋
[1 − cos (𝑛𝜋)], 𝑛 = 1,2, ….                                  (65)

 

Substituting equations (64) and (65) in equations (32) and (33) one can obtain 

𝐴𝑛 = {

4

𝑛𝜋
,     𝑛 = 1,3,5, …

0,     𝑛 = 0,2,4,6, …
                                    (66) 

and 
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𝜙𝑛 = {
−
𝜋

2
,     𝑛 = 1,3,5, …

0,     𝑛 = 0,2,4,6, …
.                                  (67) 

As one can notice, equation (66) is in accordance with the unilateral amplitude spectrum shown in Figure 8a since the 

even harmonics are zero and the odd ones decay as 1/𝑛. Similarly, equation (67) describes the unilateral phase spectrum in 

Figure 8b. Using equations (66) and (67) in the polar Fourier series (equation (34)) yields 

𝑓(𝑡) = ∑  

∞

𝑛=1,𝑛 odd 

4

𝑛𝜋
sin (𝑛𝜋𝑡)

=
4

𝜋
sin 𝜋𝑡 +

4

3𝜋
sin 3𝜋𝑡 +

4

5𝜋
sin 5𝜋𝑡 +

4

7𝜋
sin 7𝜋𝑡 + ⋯                         (68)

 

As suggested by equation (68), the periodic square wave is written in terms of individual sine waves, where each one 

has a well-defined amplitude and frequency. The most important frequencies are associated to the sine waves with the highest 

amplitudes. Figure 8 shows that the lower frequencies are the most relevant for the periodic square wave. In fact, this is the 

power of the trigonometric Fourier series and its equivalent versions since one can analyze a signal in the frequency domain to 

determine the frequencies that compose it. To explore this interpretation, Freya has a graphical feature that allows the user to see 

both the time and the frequency domains, as shown in Figure 9. To generate this spectrum, the user must select the option 

“Unilateral Amplitude Spectrum (3D)” in the “Series Coefficients” drop-down menu. 

 

Figure 9 - The decomposition of the periodic square wave in sine waves, each one with a well-defined amplitude and frequency 

that allows the user to analyze the signal in the frequency domain. 

 

Source: Authors. 

 

As for the unilateral case, one can obtain the bilateral frequency spectrum using equations (64) and (65) in equation 

(29), yielding 

𝑐𝑛 = −𝑗
2

𝑛𝜋
, 𝑛 = ±1,±3,±5,….                                        (69) 

Note that the complex coefficients in equation (69) are odd since 𝑐−𝑛 = −𝑐𝑛  holds for every integer. This means that 

the bilateral amplitude and phase spectra are even and odd, respectively. The user can be sure of this by selecting these spectra 

in the “Series Coefficients” drop-down menu. Figures 10a and 10b illustrate both spectra generated by Freya. 
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Figure 10 - The bilateral frequency spectrum of the periodic square wave. Note that the amplitude spectrum is even, while the 

phase spectrum is odd. 

 

(a) Bilateral Amplitude Spectrum (b) Bilateral Phase Spectrum 

Source: Authors. 

 

As mentioned in Subsection 3.1, Freya’s current version allows the user to expand a function using the Fourier-Legendre 

and Fourier-Bessel series, that can be chosen in the “Orthogonal Expansion” drop-down menu, as illustrated in Figure 4a. Figure 

11 shows both expansions for the periodic square wave. Note that the Fourier-Bessel series converges faster to the original 

function than Fourier-Legendre series. 

 

Figure 11 - Fourier-Legendre and Fourier-Bessel series of the periodic square wave. In each case, the upper plot shows the 

original function and its corresponding expansion considering 100 terms, while the lower plot shows the series coefficients. 

 

(a) Fourier-Legendre series (b) Fourier-Bessel series 

Source: Authors. 

 

4. Conclusion 

This paper describes Freya, a graphical user interface (GUI) built-in MATLAB® App Designer environment to be an 

educational tool for generalized Fourier series. The relationship between the generalized Fourier series and the Sturm-Liouville 

theory is briefly discussed to present the reader a method to obtain specific basis functions to be used in an orthogonal expansion. 

More precisely, three specific Sturm-Liouville problems are considered, yielding in the trigonometric Fourier series, Fourier-

Legendre series and Fourier-Bessel series, that compose the underlying mathematical theory needed for the development of 

Freya. In the future, the authors intend to improve Freya by adding other orthogonal expansions such as those based on 

Chebyshev, Hermite, and Laguerre polynomials as well as some mechanism to compare these expansions. 

 

Code availability 

Freya is made available to the users at https://github.com/HumbertoGimenesMacedo/Freya. 
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