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Abstract 

This research aims to provide a robust foundation for future energy infrastructure development and sustainability 

efforts in Mozambique. Accurately forecasting energy consumption is crucial for the strategic planning and 

sustainable development of energy infrastructure, particularly in emerging economies like Mozambique. This study 

employs advanced machine learning models—XGBoost, Neural Networks, Gradient Boosting Regression, Elastic 

Net, and Random Forest—to predict Mozambique’s energy consumption from 2025 to 2045. By comparing the 

predictive accuracy of these models using error metrics such as Mean Absolute Error (MAE), Mean Squared Error 

(MSE), and Root Mean Squared Error (RMSE), the research identifies the most effective tools for future energy 

planning. The results highlight the superiority of the Random Forest model, which consistently achieved the lowest 

error rates, suggesting it as the most reliable model for capturing the complexities of energy demand in Mozambique. 

In contrast, models like XGBoost demonstrated higher error rates, indicating potential limitations in their application 

to this dataset. The findings of this study provide valuable insights for policymakers and industry stakeholders, 

contributing to the development of more accurate and reliable energy forecasts, which are essential for ensuring the 

sustainable growth of Mozambique’s energy sector. 

Keywords: Energy consumption; Machine learning models; Forecasting; Sustainable development. 

 

Resumo  

Esta pesquisa visa fornecer uma base robusta para o desenvolvimento da infraestrutura energética futura e os esforços 

de sustentabilidade em Moçambique. Prever com precisão o consumo de energia é crucial para o planejamento 

estratégico e o desenvolvimento sustentável da infraestrutura energética, particularmente em economias emergentes 

como Moçambique. Este estudo emprega modelos avançados de aprendizado de máquina—XGBoost, Redes Neurais, 

Regressão de Gradiente Boosting, Elastic Net e Random Forest—para prever o consumo de energia de Moçambique 

de 2025 a 2045. Comparando a precisão preditiva desses modelos usando métricas de erro como Erro Médio Absoluto 

(MAE), Erro Quadrático Médio (MSE) e Raiz do Erro Quadrático Médio (RMSE), a pesquisa identifica as 

ferramentas mais eficazes para o planejamento energético futuro. Os resultados destacam a superioridade do modelo 

Random Forest, que consistentemente alcançou as menores taxas de erro, sugerindo-o como o modelo mais confiável 

para capturar as complexidades da demanda de energia em Moçambique. Em contraste, modelos como o XGBoost 

demonstraram taxas de erro mais altas, indicando possíveis limitações em sua aplicação a este conjunto de dados. As 

descobertas deste estudo fornecem insights valiosos para formuladores de políticas e partes interessadas da indústria, 

contribuindo para o desenvolvimento de previsões de energia mais precisas e confiáveis, essenciais para garantir o 

crescimento sustentável do setor energético de Moçambique. 

Palavras-chave: Consumo de energia; Modelos de aprendizado de máquina; Previsão; Desenvolvimento sustentável. 
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Resumen  

Esta investigación tiene como objetivo proporcionar una base sólida para el desarrollo futuro de la infraestructura 

energética y los esfuerzos de sostenibilidad en Mozambique. Prever con precisión el consumo de energía es crucial 

para la planificación estratégica y el desarrollo sostenible de la infraestructura energética, particularmente en 

economías emergentes como Mozambique. Este estudio emplea modelos avanzados de aprendizaje automático—

XGBoost, Redes Neuronales, Regresión de Gradiente Boosting, Elastic Net y Random Forest—para predecir el 

consumo de energía de Mozambique desde 2025 hasta 2045. Comparando la precisión predictiva de estos modelos 

utilizando métricas de error como el Error Absoluto Medio (MAE), el Error Cuadrático Medio (MSE) y la Raíz del 

Error Cuadrático Medio (RMSE), la investigación identifica las herramientas más efectivas para la planificación 

energética futura. Los resultados destacan la superioridad del modelo Random Forest, que consistentemente logró las 

tasas de error más bajas, sugiriéndolo como el modelo más confiable para capturar las complejidades de la demanda 

de energía en Mozambique. En contraste, modelos como XGBoost demostraron tasas de error más altas, indicando 

posibles limitaciones en su aplicación a este conjunto de datos. Los hallazgos de este estudio proporcionan valiosos 

conocimientos para los responsables de políticas y las partes interesadas de la industria, contribuyendo al desarrollo de 

pronósticos de energía más precisos y confiables, esenciales para garantizar el crecimiento sostenible del sector 

energético de Mozambique. 

Palabras clave: Consumo de energía; Modelos de aprendizaje automático; Previsión; Desarrollo sostenible. 

 

1. Introduction 

Energy consumption forecasting plays a critical role in ensuring the efficient production, distribution, and utilization 

of energy, particularly in developing countries like Mozambique, where the level of electrification coverage is still low 

(Nhambiu & Chichango, 2024). With the nation’s energy demand projected to rise significantly over the coming decades due 

to factors such as population growth, economic expansion, and increased electrification efforts, accurate forecasting models are 

essential for planning and policymaking (International Energy Agency, 2022). 

This study provides a comprehensive analysis of Mozambique’s future energy consumption from 2025 to 2045 by 

leveraging advanced machine learning models, including XGBoost, Neural Networks, Gradient Boosting Regression, Elastic 

Net, and Random Forest. By examining these models, the study aims to identify the most effective approaches for predicting 

energy consumption trends (Mhlanga, 2023). 

The integration of these models allows for a nuanced understanding of how various economic and demographic 

factors influence energy demand, offering valuable insights for both policymakers and industry stakeholders. With this 

knowledge, policymakers can implement measures to diversify Mozambique’s energy matrix, reduce greenhouse gas 

emissions, and ensure a smoother energy transition, as highlighted in the study by Nhambiu & Chichango (2024a). This 

research aims to provide a robust foundation for future energy infrastructure development and sustainability efforts in 

Mozambique (Desislavov et al., 2023).  

 

2. Methodology 

 The study Forecasting Energy Consumption in Mozambique was conducted as applied quantitative research, utilizing 

a predictive approach based on machine learning models (Koche, 2011; Pereira et al. 2018). Table 1 presents a summary of the 

methodological procedures and the references that support this method. 
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Table 1 - Methodology procedures. 

Step Description 
Methodological 

References 

Data Collection and 

Preprocessing 

Use of historical data from 2001 to 2023, including variables such as energy 

consumption, GDP per capita, number of energy consumers, and population. Data 

scaling for normalization. 

James et al. 

(2013) 

Machine Learning Models Selection of five machine learning models: Neural Networks, Gradient Boosting 

Regression, Elastic Net, Random Forest, and XGBoost. 

Breiman (2001) 

Model Training and 

Validation 

Training and validation of models using the preprocessed dataset, with hyperparameter 

tuning to optimize performance. k-fold cross-validation to minimize overfitting. 

Hastie (2009) 

Performance Evaluation Evaluation of model performance using error metrics such as MAE, MSE, and RMSE. Zou (2005)  

Source: Authors. 

 

 Table 1 outlines the four key methodological steps in the research: Data Collection and Preprocessing: Essential for 

creating robust models. Machine Learning Models: Demonstrates a comprehensive predictive modeling approach. Model 

Training and Validation: Ensures model accuracy and reliability. Performance Evaluation: Assesses model accuracy and 

reliability using complementary metrics. 

 

Data Collection and Preprocessing 

The dataset used in this study, a comprehensive collection of historical data from 2001 to 2023, includes variables 

such as energy consumption (GWh), GDP (USD) per capita, the number of energy clients, and population. To ensure a 

thorough and unbiased analysis, we meticulously scaled the data to ensure that all features contributed equally to the model 

training process. This process of scaling enhances the reliability of our predictions. The year 2023, with a known energy 

consumption value of 6848 GWh, was used as the starting point for all future predictions, further enhancing the depth of the 

analysis. 

 

Model Selection 

Five machine learning models were selected for this study due to their established effectiveness in handling complex, 

non-linear datasets. Each model represents a different approach to predictive modelling, offering a comprehensive analysis of 

their applicability to the energy consumption forecasting task. The models were trained and validated using the pre-processed 

dataset, with hyperparameters tuned to optimize performance: 

1. Neural Networks: Implemented with the Adam optimizer and LBFGS solver for comparative analysis. The models 

were trained with varying hidden layers and regularization parameters to enhance performance. 

 

Mathematical Model for Neural Network 

The mathematical model for a Neural Network, particularly a feedforward network with one hidden layer, can be 

represented as follows: 

1. Input Layer: Let be the input vector, where n is the number of input features. 

2. Hidden Layer: The hidden layer consists of m units (neurons). The input to each neuron in the hidden layer is a 

weighted sum of the inputs plus a bias term Geeksforgeeks (2024). 

                         

1

for 1,2, ,
n

j ji i j

i

z w x b j m
=

= + =                       (01) 
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where wji are the weights connecting the i-th input to the j-th neuron in the hidden layer, and bj is the bias term for the 

j-th neuron. 

The output of each neuron in the hidden layer is determined by applying an activation function, such as the Rectified 

Linear Unit (ReLU) or the sigmoid function. 

( ) for 1,2, ,j ja z j m= =              (02) 

3. Output Layer:  The output layer provides the final prediction. The input to each output unit is a weighted sum of 

the hidden layer outputs plus a bias term: 

                    

1

for 1,2, ,
m

k kj j k

j

y v a c k l
=

= + =           (03) 

where vkj are the weights connecting the j-th hidden layer neuron to the k-th output unit, and ck is the bias term for 

the k-th output unit. 

- The final output is obtained by applying an activation function (commonly a linear function for regression tasks): 

                    ˆ ( )k ky f y=                                            (04) 

where f(x) is typically the identity function in regression models. 

4. Optimization: The neural network is trained by minimizing a loss function, where   are the predicted outputs and y 

are the true labels. The Adam optimizer or LBFGS solver is used to update the weights and biases: 

                                         
( 1) ( ) ( )t t L   + = −                                   (05) 

where Θ represents all the weights and biases in the network, Θ is the learning rate and ( )L    is the gradient of 

the loss function concerning Θ. 

For this study, Neural Networks were implemented using the Adam optimizer and the LBFGS solver to facilitate a 

robust comparative analysis. The Adam optimizer, known for its efficiency and low computational cost, was chosen for its 

adaptive learning rate properties, particularly useful in handling sparse gradients and noisy data (Kingma & Ba, 2014). The 

LBFGS solver, a quasi-Newton method, was employed to optimize the model in cases requiring high precision, providing a 

second-order approximation to the optimization problem (Liu & Nocedal, 1989). 

The models were trained with varying hidden layers and regularization parameters to enhance performance. 

Specifically, the architecture of the neural networks was adjusted by experimenting with different numbers of hidden layers 

and units within each layer and applying techniques like L2 regularization to prevent overfitting. This approach allowed for the 

identification of an optimal configuration that balances bias and variance, ensuring that the models generalize well to new data. 

5. Support Vector Regression (SVR): The Support Vector Regression (SVR) model is a powerful tool for predicting 

continuous outcomes. In this analysis, the SVR model was employed using a Radial Basis Function (RBF) kernel. This kernel 

is particularly effective for capturing nonlinear relationships between the variables, making it well-suited for complex data 

structures where linear models may fall short (Drucker et al., 1997). 

 

Mathematical Model of Support Vector Regression (SVR) 

Support Vector Regression (SVR) aims to find a function that has at most ε deviation from the actual target values for 

all training data, while simultaneously ensuring that the function is as flat as possible (Vapnik, 1995). 
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Formulation of the SVR Problem 

Given a training dataset,
 

 where    represents the input features and  represents the 

corresponding target values, the goal is to find a function f(x) that approximates the target values as closely as possible: 

  ( ) , ( )f x w x b=   +                                                                               (06) 

Here: 

- w is the weight vector, 

- ( )x   is a mapping function that transforms the input into a higher-dimensional feature space, 

- b is the bias term, and 

-   , ( )w x  denotes the dot product in the feature space. 

The SVR model solves the following optimization problem: 

 *

2 *

, , ,
1

1
min ( )

2

n

i iw b
i

w C
 

 
=

+ +‖ ‖                                                            (07) 

subject to: 
*, ( ) , , ( )i i i i i iy w x b w x b y   −   −  +   + −  +ò ò         where    *, 0, 1, ,i i i n   =   

Here: 

- C is a regularization parameter that controls the trade-off between the flatness of f(x) and the amount up to which 

deviations larger than ε are tolerated, 

- i  and 
*

i are slack variables that allow for some flexibility in the decision boundary to handle outliers (Smola & 

Schölkopf, 2004). 

 

Kernel Trick 

In SVR, the function ( )x  is often not explicitly defined. Instead, the model uses a kernel function ( ),  i jK x x  to 

implicitly map the input data into a higher-dimensional space without needing to compute the transformation ( )x directly. 

The Radial Basis Function (RBF) kernel is defined as 

   ( )2( , ) expi j i jK x x x x= − −‖ ‖                                                                  (08) 

The expression is commonly used because it can handle nonlinear relationships effectively (Vapnik, 1998). 

 

Dual Problem 

The primal optimization problem can be converted to its dual form, which is often easier to solve: 

*

* * * *

,
1 1 1 1

1
min ( )( ) ( , ) ( ) ( )

2

n n n n

i i j j i j i i i i i

i j i i

K x x y
 

       
= = = =

− − + + − −  ò   (09) 

subject to:  
* *

1

( ) 0, 0 ,
n

i i i i

i

C   
=

− =    

Here, i  and 
*

i are the Lagrange multipliers associated with the constraints in the primal problem (Schölkopf & 

Smola, 2002). 

The RBF kernel is advantageous in scenarios where the relationship between the dependent and independent variables 

http://dx.doi.org/10.33448/rsd-v13i9.46830


Research, Society and Development, v. 13, n. 9, e3613946830, 2024 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v13i9.46830 
 

 

6 

is not straightforwardly linear. It works by mapping the input features into a higher-dimensional space where a linear separator 

can be found, thus allowing the model to learn more intricate patterns and improve prediction accuracy (Smola & Schölkopf, 

2004). 

 

Model Training and Evaluation 

In the context of forecasting energy consumption, GDP per capita, population, and the number of consumers in 

Mozambique, the SVR model with an RBF kernel was trained on historical data. The model's performance was assessed using 

standard metrics such as the R² score, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). These metrics 

provide insight into how well the model generalizes to unseen data and its accuracy in capturing the underlying trends (Vapnik, 

1995). 

 

Key Benefits of SVR with RBF Kernel 

Flexibility: The RBF kernel allows the SVR model to adapt to complex, nonlinear relationships, making it versatile 

across different types of data (Smola & Schölkopf, 2004). 

Robustness: SVR is less sensitive to outliers compared to other regression methods, which is crucial when dealing 

with real-world data that may contain noise or anomalies (Drucker et al., 1997). 

Generalization: By balancing model complexity and error minimization, SVR with RBF kernel ensures that the 

model does not overfit the training data, leading to better generalization on new, unseen data (Vapnik, 1995). 

In conclusion, the SVR model with an RBF kernel is a robust choice for forecasting in contexts where nonlinear 

relationships are prevalent, such as in predicting Mozambique's future energy consumption based on economic and 

demographic factors. 

 

Elastic Net 

Elastic Net is a linear regression model that combines the strengths of Ridge (L2 penalty) and Lasso (L1 penalty) 

regularization techniques. This model is particularly effective in handling datasets with highly correlated predictors by 

balancing the effects of both penalties, thereby improving prediction accuracy. Elastic Net is beneficial in situations where 

variable selection is important, as it can shrink some coefficients to zero, like Lasso, while also mitigating multicollinearity 

issues like Ridge regression (Zou & Hastie, 2005). The model's flexibility in tuning the regularization parameters allows for 

optimization tailored to the specific characteristics of the data. 

 

Bayesian Ridge 

Bayesian Ridge Regression introduces a Bayesian framework to linear regression, where the coefficients are treated as 

random variables with a prior distribution. This model extends Ridge regression by incorporating prior knowledge through the 

Bayesian approach, which helps stabilize the estimation of coefficients, especially in cases with small sample sizes or 

multicollinearity among predictors. The Bayesian Ridge model estimates the posterior distribution of the coefficients, leading 

to more stable and interpretable predictions. The regularization is governed by automatically tuned hyperparameters, making 

Bayesian Ridge a powerful method for producing reliable and interpretable results (MacKay, 1992). 
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Mathematical Model Presentation 

Elastic Net and Bayesian Ridge 

The Elastic Net model is a regularized linear regression that combines the penalties of Lasso (L1) and Ridge (L2). The 

objective function for Elastic Net is defined as: 

 ( )
2

2

1 1 2 2

1

1
min

2

n
T

i i

i

y
n

     
=

 
− + + 

 
 x ‖ ‖ ‖ ‖                                                             (10) 

Where: 

-  iy   is the response variable, 

- 
ix   is the vector of predictor variables, 

-    represents the coefficients to be estimated, 

- 
1‖ ‖   is the L1 norm (sum of absolute values of coefficients), 

- 2

2‖ ‖   is the L2 norm (sum of squared coefficients), 

- 1   and 2  are the regularization parameters that control the strength of the Lasso and Ridge penalties, respectively. 

Elastic Net aims to find the coefficients   that minimize the objective function, balancing between the sparsity 

induced by the Lasso penalty and the shrinkage provided by the Ridge penalty (Zou & Hastie, 2005). 

Bayesian Ridge Regression introduces a probabilistic approach to linear regression, where the model assumes that the 

coefficients   have a prior distribution, typically Gaussian. The model can be expressed as: 

2, where ~ (0, )y  = +X ò ò N                                                                  (11) 

The prior distribution on the coefficients   is given by: 

 2~ (0, )  IN                                                                                  (12) 

Using Bayes' theorem, the posterior distribution of the coefficients   is derived from the likelihood and the prior 

distribution: 

( | , ) ( | , ) ( )p y p y p  X X                                                                    (13) 

 This results in a posterior distribution for that is also Gaussian. The mean of this posterior distribution is used as the 

estimate for the coefficients, leading to more stable and interpretable results, especially when the sample size is small or 

predictors are correlated (MacKay, 1992). 

 

Polynomial Regression 

Polynomial Regression is an extension of linear regression that allows for modelling more complex relationships 

between the independent and dependent variables by introducing polynomial terms. Unlike linear regression, which assumes a 

straight-line relationship, polynomial regression is employed to capture potential nonlinear relationships by including higher-

degree terms (e.g., squared, cubic) of the independent variables in the model. This approach can significantly improve the 

model's fit when the underlying data follows a curved pattern, which a simple linear model might fail to capture accurately. 

 

Key Concepts and Application 

Model Structure - In polynomial regression, the model takes the form: 

2 3

0 1 2 3

n

ny x x x x    = + + + ++ +ò                                                      (14) 
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where y is the dependent variable, x is the independent variable, 
0 1 2, , , n     are the coefficients, and   is the error term 

(Draper & Smith, 1998). 

 

Capturing Nonlinear Relationships 

Polynomial regression is particularly useful in scenarios where the relationship between the variables is not linear but 

can be well-approximated by a polynomial. For example, if a relationship shows a parabolic trend, a second-degree polynomial 

(quadratic) model might be appropriate. As the degree of the polynomial increases, the model becomes more flexible, 

potentially capturing more complex patterns in the data (Montgomery et al., 2012). 

 

Overfitting Concerns 

A significant challenge with polynomial regression is the risk of overfitting, particularly as the degree of the 

polynomial increases. Overfitting occurs when the model becomes too complex and captures the noise in the data rather than 

the underlying relationship. To mitigate this, it is crucial to select an appropriate degree for the polynomial, often guided by 

cross-validation or other model selection techniques (Hastie et al., 2009). 

 

Practical Applications 

Polynomial regression has been widely used in various fields, such as economics, engineering, and natural sciences, 

where relationships between variables are inherently nonlinear. For instance, in modelling the trajectory of an object under 

gravity, the relationship between time and position is quadratic (Montgomery et al., 2012). 

In conclusion, Polynomial regression is a powerful tool for modelling nonlinear relationships between variables. By 

including polynomial terms, the model gains the flexibility to fit more complex patterns, making it particularly useful in 

scenarios where the relationship between the independent and dependent variables cannot be adequately captured by a simple 

linear model. However, caution must be exercised to avoid overfitting, which can lead to poor generalization to new data. 

Each model was trained on historical data on energy consumption, GDP per capita, the number of consumers, and 

population size. Model performance was evaluated using Mean Absolute Error (MAE), and Root Mean Squared Error 

(RMSE). 

 

Dataset Overview 

The dataset utilized in this study encompasses historical energy consumption data from 2001 to 2023, along with 

pertinent economic and demographic indicators that affect energy demand. The data underwent cleaning and pre-processing to 

address missing values, normalize numerical features, and encode categorical variables as needed (James et al., 2013). It 

consists of 23 entries, each representing annual data from 2001 to 2023. The dataset includes five columns: Year, Energy 

Consumption in GWh, GDP in USD, Number of Consumers, and Population. Figure 1 illustrates that trends in Energy 

Consumption over the time 
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Figure 1 - Trends in Energy Consumption, GDP per Capita, Consumer Numbers, and Population Over Time. 

 

Source: Authors. 

 

Figure 1 presents the main economic indicators. Below are detailed analyses of each of the four diagrams: 

Energy Consumption (GWh) Over Time 

The graph depicting Energy Consumption (GWh) Over Time shows a steady upward trend in Mozambique from 2001 

to 2023. The trend line, represented by the red dashed line, indicates a consistent increase in energy demand, reflecting the 

country’s economic growth and rising energy needs. The slope of the trend line suggests strong and continuous growth in 

energy consumption, likely driven by industrialization and increased access to electricity. On other hand, the GDP per Capita 

(USD) Trends in Mozambique (2001-2023) graphic has also shown an upward trend over the years, as depicted in the graph. 

The trend line confirms this increase, suggesting that the economic conditions in the country have been improving steadily. 

This growth in GDP per capita is likely linked to the expansion of various economic sectors and increased investments in 

infrastructure, contributing to the country's overall economic development. 

 

Early 2000s (2001-2010) 

Growth Phase 

During the early 2000s, Mozambique experienced consistent economic growth, driven by post-civil war 

reconstruction, investments in infrastructure, and international aid. This period likely saw a steady increase in GDP per capita 

as the economy stabilized and expanded. For instance, Mozambique's GDP growth was reported at around 7-8% annually, 

largely supported by agriculture and megaprojects in aluminum smelting (World Bank, 2010). 

 

Key Drivers 

The agriculture sector, which employs most of the population, along with investments in infrastructure, played a 

significant role in this economic growth. Additionally, the development of the Mozal aluminum smelter significantly 

contributed to the economy (African Development Bank, 2010). 

2010-2015 - Accelerated Growth - The discovery and development of natural gas reserves in the Rovuma Basin and 
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other mineral resources led to accelerated GDP growth. Mozambique became a focal point for foreign direct investment (FDI), 

particularly in the extractive industries (IMF, 2015). 

 

Challenges 

 Despite this growth, issues such as poverty and inequality remained prevalent. The benefits of economic expansion 

did not equally reach all segments of the population (UNDP, 2015). 

2016-2018 - Economic Setback - Mozambique faced significant challenges during this period, most notably the 

hidden debt scandal in 2016, which led to a sharp decline in donor confidence, currency depreciation, and an overall economic 

slowdown. This crisis severely impacted GDP per capita growth (Hanlon, 2016). 

Impact on Public Finances: The hidden debt crisis led to a reduction in public spending, which affected social 

services and infrastructure development, further hindering economic progress (Transparency International, 2017). 

2019-2023: Recovery and Stabilization - Efforts to stabilize the economy began, with some recovery in GDP per 

capita as the government implemented reforms and resumed negotiations with international financial institutions (World Bank, 

2019). 

COVID-19 Pandemic: The global COVID-19 pandemic in 2020 caused a temporary decline in GDP per capita due to 

reduced economic activity, trade disruptions, and decreased foreign investment. The World Bank reported a significant 

contraction in Mozambique's economy during this period (World Bank, 2020). 

Post-Pandemic Recovery: By 2022 and 2023, the economy began to recover, particularly with a renewed focus on 

exploiting natural resources and increased foreign investment in the gas sector (IEA, 2023). 

 

Number of Consumers Over Time 

In Figure 1, the graph depicting the number of electricity consumers shows a significant rise from 2001 to 2023. The 

trend line highlights a sharp increase, especially in the later years. This rapid growth indicates successful electrification efforts 

and an expanding reach of electricity services to a larger portion of the population. The steepness of the trend line reflects the 

accelerated pace at which new consumers have been added, suggesting ongoing efforts to improve access to electricity across 

the country. 

 

Population Over Time 

The population of Mozambique has been growing steadily, as shown in Figure 1. The trend line indicates a gradual 

increase in population size over the years, consistent with demographic trends observed in many developing countries. 

Population growth is a critical factor driving the increased demand for energy and other essential services, as more people 

require access to electricity, water, healthcare, and education. 

 

Overall Analysis 

The consistent upward trends across all graphs underscore the interconnected nature of economic growth, population 

increase, and energy demand in Mozambique. As the country continues to develop, the rising GDP per capita, expanding 

consumer base, and growing population will likely lead to further increases in energy consumption. These trends highlight the 

importance of planning for sustainable energy infrastructure to meet future demand and support continued economic progress. 
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Statistical Summary 

Energy Consumption: Energy consumption increased from 1,034 GWh in 2001 to 6,848 GWh in 2023, reflecting a 

substantial rise in energy demand over the years. This increase was also verified in a study conducted by Chichango & 

Cristóvão (2024). 

GDP (USD): The GDP per capita increased from 204 USD in 2001 to 590 USD in 2023, indicating economic growth 

during this period. 

Number of Consumers: The number of consumers grew from approximately 199,000 in 2001 to over 3.2 million in 

2023, reflecting an expansion in electricity access. 

Population: The population increased from about 16.8 million in 2001 to approximately 32.4 million in 2023. 

The mean values and variability of these factors suggest that Mozambique's energy demand is closely tied to its 

economic and demographic trends. 

 

3. Results and Discussion  

Results 

The dataset was split into training (80%) and testing (20%) sets to ensure that the models were trained on a robust 

portion of the data while reserving a subset for performance evaluation. Cross-validation techniques, specifically k-fold cross-

validation, were employed to minimize overfitting and ensure that the models generalize well to unseen data (Hastie, 2009). 

The Figure 2 presents the Comparison of Regression Models for Energy Consumption Forecast. 

 

Figure 2 - Comparison of Regression Models for Energy Consumption Forecast (GWh) from 2000 to 2045. 

 

Source: Authors. 

 

The graphic in Figure 2, presents various regression models predicting energy consumption (in GWh) over the years 

from 2000 to 2045. The x-axis represents the years, while the y-axis indicates the energy consumption in GWh. The graph 

includes the following models: 

 CatBoost (Blue Line): This model appears to closely follow the actual data points with some fluctuations. 

ElasticNet (Orange Line): This model predicts a more linear increase in energy consumption, showing a steady rise 

without considering the fluctuations seen in the data. 
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Gradient Boosting Regressor (Green Line - Energy (GWh) Gbr): This model also follows the data closely, with a 

slight tendency to smooth out some of the fluctuations. 

Random Forest (Light Blue Line): The Random Forest model, like CatBoost, seems to capture the nuances of the 

data well, though it is slightly more smoothed. 

Neural Network (Dark Green Line - Energy (GWh) NN): The Neural Network model predicts a generally 

increasing trend, like the Elastic Net but with a more pronounced non-linear pattern in certain areas. 

The overall trend shows an increase in energy consumption over time, with different models predicting varying 

degrees of increase depending on their ability to capture the complexities in the data. The ElasticNet and Neural Network 

models show more generalized predictions, while CatBoost, Gradient Boosting Regressor, and Random Forest offer more 

detailed projections with variations that align more closely with historical trends. 

 

Discussion 

The performance of each model was evaluated using three key error metrics: Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and Root Mean Squared Error (RMSE). These metrics were chosen to provide a comprehensive 

assessment of model accuracy, with MAE offering a straightforward measure of average error, MSE highlighting larger errors 

through squaring, and RMSE providing a scale-sensitive measure of prediction accuracy (Montgomery et al., 2012). 

 

Random Forest 

The Random Forest model consistently shows the lowest error metrics across MAE, MSE, and RMSE. This indicates 

that the model's predictions are closest to the actual values, making it highly reliable for this dataset. The ensemble nature of 

Random Forest, which aggregates multiple decision trees, contributes to its robustness and accuracy by reducing variance and 

preventing overfitting. 

 

Gradient Boosting Regressor (GBR) 

GBR also performs well, with error metrics slightly higher than Random Forest. This model builds sequential trees 

where each tree corrects the errors of the previous one, which generally leads to high accuracy. However, GBR might be more 

prone to overfitting than Random Forest if not carefully tuned. 

 

Elastic Net 

Elastic Net, a regularized regression model, shows higher errors compared to Random Forest and GBR. Its 

performance indicates that while it is useful for handling datasets with multicollinearity, it may not be as effective as ensemble 

methods in capturing complex relationships in the data. 

 

Neural Network (NN) 

The Neural Network model exhibits errors that suggest it struggles with this specific dataset. Neural networks are 

powerful but can be sensitive to the quality and amount of data, often requiring large datasets to outperform simpler models. 

The higher RMSE indicates that the model may have overfitted or failed to generalize well from the training data. 

 

XGBoost 

XGBoost, despite being a popular model in many scenarios, shows the highest errors in this analysis. This suggests 
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that the model may not have been well-suited to the dataset or that it overfitted to the training data, leading to poor 

generalization on unseen data. XGBoost's complexity requires careful tuning, which might not have been achieved here. 

 

Model Comparison and Selection 

The models were compared based on their error metrics, with particular attention given to identifying the model that 

consistently demonstrated the lowest errors across all metrics as showed in Figure 3.  

 

Figure 3 - Error Metrics Comparison Across Regression Models: MAE, MSE, and RMSE. 

   

Source: Authors. 

 

In Figure 3, the Random Forest model emerged as the most accurate, suggesting its robustness in capturing the non-

linear relationships and variability inherent in Mozambique’s energy consumption patterns (Breiman, 2001). 

 

4. Conclusion 

The comparative analysis of various machine learning models reveals significant differences in their predictive 

accuracy and applicability to energy consumption forecasting in Mozambique. The Random Forest model emerged as the most 

reliable, consistently delivering the lowest error metrics across Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE). This model's ensemble approach, which aggregates multiple decision trees, contributes to 

its robustness and ability to prevent overfitting, making it a strong candidate for future energy forecasting tasks. In contrast, 

models such as XGBoost, despite its popularity, showed the highest errors, indicating a potential mismatch between the 

model's assumptions and the dataset's characteristics. These findings underscore the importance of careful model selection and 

tuning in predictive analytics, especially in contexts where accurate forecasting is crucial for long-term planning. The results of 

this study not only highlight the strengths and limitations of different machine learning approaches but also provide a pathway 

for improving energy consumption forecasting in Mozambique, ultimately contributing to more informed decision-making and 

sustainable energy management (Breiman, 2001; Hastie, Tibshirani, & Friedman, 2009). 

For future studies, it is suggested to explore deep learning techniques such as RNNs and CNNs, and to incorporate 

climatic and socioeconomic data to improve the accuracy of energy consumption forecasts. Additionally, comparing hybrid 

approaches and evaluating different forecasting time horizons can contribute to more robust and sustainable energy planning in 

Mozambique. 
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