Analysis of risk factors in pediatric acute lymphoblastic leukemia: A synthesis of scientific literature

Authors

DOI:

https://doi.org/10.33448/rsd-v13i10.47193

Keywords:

Precursor Cell Lymphoblastic Leukemia-Lymphoma, Risk Factors, Children.

Abstract

Introduction: Acute lymphoblastic leukemia (ALL) is the most common malignant hematological disease in the pediatric community, highlighting the importance of ongoing investigation into its risk factors to improve early diagnosis and prognosis rates. Objective: This study aims to highlight the risk factors of childhood ALL and emphasize the importance of implementing health strategies to mitigate them. Methodology: This is an integrative systematic literature review, utilizing data from the PubMed platform, conducted in 2024, with the MeSH descriptors “Precursor Cell Lymphoblastic Leukemia-Lymphoma,” “child,” and “risk factors,” combined with the Boolean operator AND. Furthermore, the descriptor “treatment” was added with the operator NOT, resulting in 60 articles, which were filtered by “free full text” and “last five years.” After applying the inclusion and exclusion criteria, 23 articles were selected. Results: Identified risk factors include exposure to carcinogens, such as pesticides and toxic gases (benzene), proximity to magnetic fields, and artificial light. Maternal health during pregnancy is also related to risk, including maternal infections and exposure to high temperatures. Immune response and genetic polymorphisms, especially in Hispanic children, also contribute to the etiopathogenesis of ALL. Conclusion: Childhood ALL remains prevalent, and although therapeutic advances have raised survival rates to 90%, environmental and genetic factors still influence its incidence. Future research should integrate environmental prevention and genomic advances for a better understanding and control of ALL.

Downloads

Download data is not yet available.

References

Agência Nacional de Vigilância Sanitária (ANVISA). (2024). Diuron: Monografia. Anvisa.

https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas/d/4283json-file-1.

Agência Nacional de Vigilância Sanitária (ANVISA). (2024). Fosmete: Monografia. Anvisa.

https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas/f/4335json-file-1

Alvarez, L. G. P.; Vera, T. R.; Martínez, A. C. O.; & Maldonado, I. N. P. (2017). Urinary trans-trans muconic acid (exposure biomarker to benzene) and hippuric acid (exposure biomarker to toluene) concentrations in Mexican women living in high-risk scenarios of air pollution. Archives of Environmental & Occupational Health, 72(6), 351-358.

Anima. (2014). Manual revisão bibliográfica sistemática integrativa: a pesquisa baseada em evidências. Grupo Anima.

https://biblioteca.cofen.gov.br/wp-content/uploads/2019/06/manual_revisao_bibliografica-sistematica-integrativa.pdf

Clark, C. J., Johnson, N. P., Soriano Jr, M., Warren, J. L., Sorrentino, K. M., Kadan-Lottick, N. S., Saiers, J. E., Ma, X., & Nicole C. (2022). Unconventional oil and gas development exposure and risk of childhood acute lymphoblastic leukemia: a case–control study in Pennsylvania, 2009–2017. Environmental Health Perspectives, 130(8), 087001.

Crossetti, M. G. M. (2012). Revisión integradora de la investigación en enfermería el rigor científico que se le exige. Maria Da Graça Oliveira Crossetti. Rev. Gaúcha Enferm. 33 (2): 8-9.

Foster, K. L.; Kern, K. D.; Chambers, T. M.; Lupo, P. J.; Kamdar, K. Y.; Scheurer, M. E.; & Brown, A. L. (2019). Weight trends in a multiethnic cohort of pediatric acute lymphoblastic leukemia survivors: A longitudinal analysis. PLoS One, 14(5), e0217932.

Gocho, Y., & Yang, J. J. (2019). Genetic defects in hematopoietic transcription factors and predisposition to acute lymphoblastic leukemia. Blood, The Journal of the American Society of Hematology, 134(10), 793-797.

He, J.R.; Hirst, J. E.; Tikellis, G.; Phillips, G. S.; Ramakrishnan, R.; Paltiel, O.; Ponsonby, A.L.; Klebanoff, M.; Olsen, J.; Murphy, M. F. G.; Håberg, S. E.; Lemeshow, S.; Olsen, S. F.; Qiu, X.; Magnus, P.; Golding, J.; Ward, M. H.; Wiemels, J. L.; Rahimi, K.; Linet, M. S.; & Dwyer, T. (2022). Common maternal infections during pregnancy and childhood leukaemia in the offspring: findings from six international birth cohorts. International Journal of Epidemiology, 51(3), 769-777.

Heck, J. E.; He, D.; Contreras, Z. A.; Ritz, B.; Olsen, J.; & Hansen, J. (2019). Parental occupational exposure to benzene and the risk of childhood and adolescent acute lymphoblastic leukaemia: a population-based study. Occupational and environmental medicine, 76(8), 527-529.

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization, & International Agency for Research on Cancer. (2002). Non-ionizing Radiation: Static and extremely low-frequency (ELF) electric and magnetic fields.

Kheifets, L., Ahlbom, A., Crespi, C. M., Feychting, M., Johansen, C., Monroe, J., & Murphy, M. F. (2010). Pooled analysis of recent studies on magnetic fields and childhood leukaemia. British Journal of Cancer, 103(7), 1128-1135.

Kovach, A. E.; Wengyn, M.; Vu, M. H.; Doan, A.; Raca, G.; & Bhojwani, D. (2024). IKZF1PLUS alterations contribute to outcome disparities in Hispanic/Latino children with B‐lymphoblastic leukemia. Pediatric Blood & Cancer, 71(7), e30996.

Lillie, K. (2021). Leukaemia and lockdown: the delayed infection model of childhood acute lymphoblastic leukaemia and the COVID‐19 pandemic. Pediatric Blood & Cancer, 68(10), e29194.

Little, M. P.; Mai, J. Z.; Fang, M.; Chernyavskiy, P.; Kennerley, V.; Cahoon, E. K.; Cockburn, M. G.; Kendall, G. M.; & Kimlin, M. G. (2024). Solar ultraviolet radiation exposure, and incidence of childhood acute lymphocytic leukaemia and non-Hodgkin lymphoma in a US population-based dataset. British Journal of Cancer, 130(9), 1441-1452.

Lupatsch, J. E.; Kreis, C.; Konstantinoudis, G.; Ansari, M.; Kuehni, C. E.; & Spycher, B. D. (2021). Birth characteristics and childhood leukemia in Switzerland: a register-based case–control study. Cancer Causes & Control, 32, 713-723.

Mahjoub, S.; Chayeb, V.; Zitouni, H.; Ghali, R. M.; Regaieg, H.; Almawi, W. Y.; & Mahjoub, T. (2019). IKZF1 genetic variants rs4132601 and rs11978267 and acute lymphoblastic leukemia risk in Tunisian children: a case-control study. BMC Medical Genetics, 20, 1-7.

Malavolti, M.; Malagoli, C.; Filippini, T.; Poli, M.; Cellini, M.; Palazzi, G.; & Vinceti, M. (2023). Residential exposure to magnetic fields from high-voltage power lines and risk of childhood leukemia in an Italian population. Population Medicine, 5(Supplement).

National Institute of Environmental Health Sciences (NIEHS). (2023). Fracking. https://www.niehs.nih.gov/health/topics/agents/fracking.

Nguyen, A.; Crespi, C. M.; Vergara, X.; Chun, N.; & Kheifets, L. (2021). Residential proximity to plant nurseries and risk of childhood leukemia. Environmental research, 200, 111388.

Park, A. S.; Ritz, B.; Yu, F.; Cockburn, M.; & Heck, J. E. (2020). Prenatal exposure to low‐level benzene and childhood leukemia: a case‐control study. Environmental Research, 183, 109228.

Pereira, B. R. S.; Duran, A. S.; Rios, S. M.; Almeida, J. A.; Martinelli, I. L.; Murao, M. A.; de Almeida, R. M.; Cabral, A. C.; & de Almeida, E. H. (2021). Exposure to pesticides and the risk of childhood leukemia: a systematic review. International Journal of Environmental Research and Public Health, 18(9), 4741.

Pieters, R.; Hooijkaas, H.; & van der Velden, V. H. J. (2023). The role of the environment in the genesis of childhood acute lymphoblastic leukaemia. British Journal of Haematology, 202(6), 1033-1044.

Ritz, B.; Zhang, X.; Hoggatt, K. J.; & Ahlbom, A. (2019). The Role of Childhood Exposure to Ambient Air Pollution in the Development of Childhood Acute Lymphoblastic Leukaemia. Environmental Health Perspectives, 127(11), 117005.

Roff, T. L.; O'Reilly, J. M.; Roff, J. J.; Denny, M.; & Denny, R. S. (2019). The role of environmental exposure in the development of acute lymphoblastic leukemia in children: a systematic review of the literature. Journal of Pediatric Hematology/Oncology, 41(3), 173-183.

Sadeghi, A.; Hashemizadeh, F.; & Ahmadi, F. (2018). The association between maternal exposure to chemical pollutants and the risk of childhood leukemia: a case-control study in Iran. Environmental Science and Pollution Research, 25(24), 23601-23609.

Shen, C., & Chen, J. (2024). Genetic susceptibility and environmental exposure to childhood acute lymphoblastic leukemia: a review. Cancer Epidemiology, Biomarkers & Prevention, 33(2), 234-245.

Smith, A. J.; Wahlster, L.; Jeon, S.; Kachuri, L.; Black, S.; Langie, J.; Cato, L. D.; Nakatsuka, N.; Chan, T.-F.; Xia, G.; Mazumder, S.; Yang, W.; Gazal, S.; Eng, C.; Hu, D.; Gonzalez, E. B.; Ziv, E.; Metayer, C.; Mancuso, N.; Yang, J. J.; Ma, X.; Wiemels, J. L.; Yu, F.; Chiang, C. W. K.; & Sankaran, V. G. (2024). A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children. Cell Genomics, 4(4).

Smith, A. J.; Walsh, K. M.; Morimoto, L. M.; Francis, S. S.; Hansen, H. M.; Jeon, S.; Gonseth, S.; Chen, M.; Sun, H; Luna, F. S.; Antillón, F.; Girón, V.; Kang, A. Y.; Smirnov, I.; Shao, X.; Whitehead, T. P.; Barcellos, L. F.; Jolly, K. W.; Healy, J.; Laverdière, C.; Sinnett, D.; Taub, J. W.; Birch, J. M.; Thompson, P. D.; de-Oliveira, M. S. P.; Spector, L. G.; DeWan, A. T.; Mueller, B. A.; Chiang, C.; Metayer, C.; Ma, X.; & Wiemels, J. L. (2019). Heritable variation at the chromosome 21 gene ERG is associated with acute lymphoblastic leukemia risk in children with and without Down syndrome. Leukemia, 33(11), 2746-2751.

Stone, R. H.; Schwartz, A. M.; & Pottorff, C. M. (2023). Neighborhood deprivation and risk of childhood leukemia: a systematic review and meta-analysis. Pediatric Blood & Cancer, 70(8), e30179.

Takahashi, A.; Okamoto, Y.; Nakai, A.; Murakami, Y.; Kanazawa, T.; Watanabe, K.; Ikeda, M.; & Yamamoto, M.(2024). Exposure to electromagnetic fields from power lines and childhood acute lymphoblastic leukaemia: A population-based study. Environmental Research, 215, 114294.

Tirosh, A.; Shkolnik, H.; & Wiemels, J. L. (2023). Understanding environmental exposures in childhood leukemia: insights from an ecological study. International Journal of Environmental Research and Public Health, 20(12), 6110.

U.S. Environmental Protection Agency (EPA). (2021). Contaminants of concern and potential health effects: A Review of Current Science. https://www.epa.gov/sites/default/files/2021-01/documents/contaminants_of_concern_and_potential_health_effects.pdf

Yang, C. C.; Chan, K. H.; Ho, Y. T.; Chen, Y. L.; & Huang, Y. C. (2023). Association between maternal smoking and the risk of childhood leukemia: A systematic review and meta-analysis. Environmental Pollution, 322, 121038.

Published

2024-10-25

Issue

Section

Health Sciences

How to Cite

Analysis of risk factors in pediatric acute lymphoblastic leukemia: A synthesis of scientific literature. Research, Society and Development, [S. l.], v. 13, n. 10, p. e115131047193, 2024. DOI: 10.33448/rsd-v13i10.47193. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/47193. Acesso em: 28 jun. 2025.