In vitro and in vivo antioxidant activities of levan: An overview of recent research
DOI:
https://doi.org/10.33448/rsd-v13i10.47202Keywords:
Free radicals, Polysaccharides, Fructan, Levan, Antioxidant activity.Abstract
Reactive oxygen species (ROS) are part of the normal metabolism of living organisms. They affect the performance of biological systems, even resulting in the development of diseases. Eliminating ROS represents an effective strategy for preventing diseases. In turn, antioxidants are chemical substances that reduce ROS. They can be synthetic or from natural sources. Unlike synthetic antioxidants, natural antioxidants usually do not have side effects. In this sense, levan is a fructose polysaccharide obtained naturally from plants and microorganisms. Its biological properties mainly include anticancer, anti-inflammatory and antioxidant activities. Currently, levan has received special attention from the point of view of its antioxidant activities. Therefore, the objective of this work was to review the potential of the biopolymer levan as na antioxidant agent. This is na integrative literature review, in which the data found was analyzed using the Content Analysis technique. The results of this investigation showed that its antioxidant action depends on a combination of factors, such as microbial origin, molecular weight, type of assay Applied and polymer concentration. Analysis of the results suggests that levan is na excellent ROS scavenger and can combat pathologies associated with oxidative stress.
References
Abdel-Fattah, A. M., Gamal-Eldeen, A. M., Helmy, W. A. & Esawy, M. A. (2012). Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydrate Polymers, 89(2), 314–322.
Ağçeli, G. K. (2023). Similarities and differences of nano-sized levan synthesized by Bacillus haynesii at low and high temperatures: Characterization and bioactivity. International Journal of Biological Macromolecules, 253(Pt 3), 126804.
Al-Qaysi, S. A. S., Al-Haideri, H., Al-Shimmary, S. M., Abdulhameed, J. M., Alajrawy, O. I., Al-Halbosiy, M. M., Moussa, T. A. A. & Farahat, M. G. (2021). Bioactive Levan-Type Exopolysaccharide Produced by Pantoea agglomerans ZMR7: Characterization and Optimization for Enhanced Production. Journal of Microbiology and Biotechnology, 31(5), 696–704.
Altıntaş, Ö. E., Öner, E. T., Çabuk, A. & Çelik, P. A. (2022). Biosynthesis of Levan by Halomonas elongata 153B: Optimization for Enhanced Production and Potential Biological Activities for Pharmaceutical Field. Journal of Polymers and the Environment, 1–16.
Antunes, M. V.; Lazzaretti, G.; Gamaro, G. D.; Linden, R. (2008). Estudo pré-analítico e de validação para determinação de malondialdeído em plasma humano por cromatografia líquida de alta eficiência, após derivatização com 2,4-dinitrofenilhidrazina. Revista Brasileira de Ciências Farmacêuticas, 44 (02), 279–287.
Aytar Çelik, P. A., Barut, D., Altintaş, Ö. E., Enuh, B. M., Yaman, B. N., Mutlu, M. B., Çabuk, A. &·Öner, E. T. (2024). QPCR-guided screening of levansucrase: levan characterization and genomic insights. Journal of Polymers and the Environment, 1–14.
Bardin, L. (2016). Análise do conteúdo. Edições 70.
Belghith, K. S., Dahech, I., Hamden, K., Feki, A., Mejdoub, H. & Belghith, H. (2012). Hypolipidemic effect of diet supplementation with bacterial levan in cholesterol-fed rats. International Journal of Biological Macromolecules, 50(4), 1070–1074.
Bouallegue, A., Casillo, A., Chaari, F., La Gatta, A., Lanzetta, R., Corsaro, M. M., Bachoual, R. & Ellouz-Chaabouni, S. (2019). Levan from a new isolated Bacillus subtilis AF17: Purification, structural analysis and antioxidant activities. International Journal of Biological Macromolecules, 144, 316–324.
Campanini, B. D. & Rocha, M. B. (2021). O teatro na educação brasileira para a construção do pensamento científico: um estudo na formação inicial de professores. Ciência & Educação, 27, e21073, 1–17.
Chełminiak-Dudkiewicz, D., Machacek, M., Długaszewska, J., Wujak, M., Smolarkiewicz-Wyczachowski, A., Bocian, S., Mylkie, K., Goslinski, T., Marszall, M. P. & Ziegler-Borowska, M. (2023). Fabrication and characterization of new levan@CBD biocomposite sponges as potential materials in natural, non-toxic wound dressing applications. International Journal of Biological Macromolecules, 253, 126933, 1–16.
Combie, J. & Öner, E. T. (2019). From healing wounds to resorbable electronics, levan can fill bioadhesive roles in scores of markets. Bioinspiration & Biomimetics, 14(01), 1–11.
Dahech, I., Fakhfakh, J., Damak, M. & Belghith, H. (2013). Structural determination and NMR characterization of a bacterial exopolysaccharide. International Journal of Biological Macromolecules, 59, 417–422.
Domżał-Kędzia, M., Lewińska, A., Jaromi, A., Weselski, M., Pluskota, R. & Łukaszewicz, M. (2019). Fermentation parameters and conditions affecting levan production and its potential applications in cosmetics. Bioorganic Chemistry, 1–8.
Eroglu, M. S., Oner, E. T., Mutlu, E. C. & Bostan, M. S. (2017). Sugar based biopolymers in nanomedicine; New emerging era for cancer imaging and therapy. Current Topics in Medicinal Chemistry, 17(11), 1–14.
Esawy, M. A., Amer, H., Gamal-Eldeen, A. M., El Enshasy, H. A., Helmy, W. A., Abo-Zeid, M. A. M., Malek, R., Ahmed, E. F. & Awad, G. E. A. (2013). Scaling up, characterization of levan and its inhibitory role in carcinogenesis initiation stage. Carbohydrate Polymers, 95, 578–587.
Esawy, M. A., Hashem, A. M., Ahmed, E. F., Taie, H. A. A., El Aty, A. A. A., Salama, B. M., Gamal, A. A. & Awad, G. E. A. (2016). Sequential optimization by statistical designs for levansucrase and levan production by Bacillus subtilis M and its evaluation of antioxidant activity. Journal of Chemical and Pharmaceutical Research, 8(8), 475–485.
Fernandes, P. A. R., Coimbra, & M. A. (2023). The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydrate Polymers, 314, 15, 120965, 1–15.
Franco-Robles, E. & López, M. G. (2015). Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms. The Scientific World Journal, 289267, 1–15.
Freitas, F., Alves, V. D. & Reis, M. A. M. (2011). Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends in Biotechnology, 29 (8), 388–398.
Gamal, A. A., Abbas, H. Y., Abdelwahed, N. A. M., Kashef, M. T., Mahmoud, K., Esawy, M. A. & Ramadan, M. A. (2021). Optimization strategy of Bacillus subtilis MT453867 levansucrase and evaluation of levan role in pancreatic cancer treatment. International Journal of Biological Macromolecules, 182, 1, 1590–1601.
Gulcin, I. ˙ (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94 (3), 651–715.
Haddar, A., Feriani, A., Hamed, M., Sila, A. & Ellouz-Chaabouni, S. (2021). Preventive effect of Bacillus mojavensis levan against carbon tetrachloride and cisplatin toxicity: in vivo study. Environmental Science and Pollution Research, 1–10.
Hamdy, A. A., Elattal, N. A., Amin, M. A., Ali, A. E., Mansour, N. M., Awad, G. E. A., Farrag, A. R. H. & Esawy, M. A. (2018). In vivo assessment of possible probiotic properties of Bacillus subtilis and prebiotic properties of levan. Biocatalysis and Agricultural Biotechnology, 13, 190–197.
Hertadi, R., Amari, M. M. S., Ratnaningsih, E. (2020). Enhancement of antioxidant activity of levan through the formation of nanoparticle systems with metal ions. Heliyon, 6, e04111, 1–9.
Hertadi, R., Permatasari, N. U. & Ratnaningsih, E. (2021). Box-Wilson Design for Optimization of in vitro Levan Production and Levan Application as Antioxidant and Antibacterial Agents. Iranian Biomedical Journal, 25(3), 202–212.
Huang, T.-T., Huang, M.-Y., Tsai, C.-K. & Su, W.-T. (2020). Phosphorylation of levan by microwave-assisted synthesis enhanced anticancer ability. Journal of Bioscience and Bioengineering, 1–9.
Kang, S. A., Jang, K. H., Seo, J. W., Kim, K. H., Kim, Y. H., Rairakhwada, D., Seo, M. Y., Lee, J. O., Ha, S. D., Kim, C. H., Rhee, S. K. (2009). Levan: applications and perspectives. In: Rehm, B. H. A. (ed.), Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press, ISBN: 978-1-904455-36-3, pp. 145–161.
Kazak, H., Barbosa, A. M., Baregzay, B., Alves da Cunha, M. A., Toksoy Oner, E., Dekker, R. F. H. & Khaper, N. (2014). Biological activities of bacterial levan and three fungal -glucans botryosphaeran and lasiodiplodan under high glucose condition in the pancreatic -cell line INS-1E. In: Popescu, L. M., Hargens, A. R., Singal, P. K. (eds.). Adaptation Biology and Medicine: New Developments, vol. 7, Narosa Publishing House, New Delhi, pp.105–115.
Kim, S. J. & Chung, B. H. (2016). Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydrate Polymers, 150, 400–407.
Kırtel, O., Lescrinier, E., Van den Ende, W. & Öner, E. T. (2019). Discovery of fructans in Archaea. Carbohydrate Polymers, 149–156.
Kop, T. J., Jakovljević, D. M., Živković, L. S., Žekić, A., Beškoski, V. P., Milić, D. R., Gojgić-Cvijović, G. D. & Bjelaković, M. (2020). Polysaccharide-fullerene supramolecular hybrids: Synthesis, characterization and antioxidant activity. European Polymer Journal, 123, 109461, 1–10.
Korany, S. M., El-Hendawy, H. H., Sonbol, H. & Hamada, M. A. (2021). Partial characterization of levan polymer from Pseudomonas fluorescens with significant cytotoxic and antioxidant activity. Saudi Journal of Biological Sciences, 28(11), 6679–6689.
Lewińska, A., Domzał-Kędzia, M., Kierul, K., Bochynek, M., Pannert, D., Nowaczyk, P. & Łukaszewicz, M. (2021). Targeted hybrid nanocarriers as a system enhancing the skin structure. Molecules, 26, 1063, 1–20.
Liu, J., Luo, J., Ye, H. & Zeng, X. (2012). Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food and Chemical Toxicology, 50 (3-4), 767–772.
Liu, W., Wang, J., Zhang, Z., Xu, J., Xie, Z., Slavin, M. & Gao, X. (2014). In vitro and in vivo antioxidant activity of a fructan from the roots of Arctium lappa L. International Journal of Biological Macromolecules, 65, 446–453.
Moradali, M. F. & Rehm, B. H. A. (2020). Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews (Microbiology), 18, 195-210.
Mujtaba, M., Ali, Q., Yilmaz, B. A., Kurubas, M. S., Ustun, H., Erkan, M., Kaya, M., Cicek, M. & Oner, E. T. (2023). Understanding the effects of chitosan, chia mucilage, levan based composite coatings on the shelf life of sweet cherry. Food Chemistry, 416, 135816, 1–16.
Mummaleti, G., Sarma, C., Kalakandan, S. K., Gazula, H., Sivanandham, V. & Anandharaj, A. (2022). Characterization of levan produced from coconut inflorescence sap using Bacillus subtilis and its application as a sweetener. LWT - Food Science and Technology, 154, 112697.
Ning, X., Liu, Y., Jia, M., Wang, Q., Sun, Z., Ji, L., Mayo, H. M., Zhou, Y., & Sun, L. (2021). Pectic polysaccharides from radix sophorae tonkinensis exhibit significant antioxidant effects. Carbohydrate Polymers, 262, Article 117925.
Omran, B. & Baek, K-H. (2023). Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules, 26, 7031, 1–37.
Öner, E. T., Hernández, L. & Combie, J. (2016). Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnolology Advances, 34(5), 827–844.
Pei, F., Ma, Y., Chen, X. & Liu, H. (2020). Purification and structural characterization and antioxidant activity of levan from Bacillus megaterium PFY-147. International Journal of Biological Macromolecules, 161, 1181–1188.
Razack, S. A., Velayutham, V., Thangavelu, V. (2014). Medium optimization and in vitro antioxidant activity of exopolysaccharide produced by Bacillus subtilis. Korean Journal of Chemical Engineering, 31(2), 296–303.
Salama, B. M., Helmy, W. A., Ragab, T. I. M., Ali, M. M., Taie, H. A. A. & Esawy, M. A. (2019). Characterization of a new efficient low molecular weight Bacillus subtilis NRC16 levansucrase and its levan. Journal of Basic Microbiology, 59, 1004–1015.
Santos, I. V. et al. (2021). Óleos essenciais utilizados no tratamento de neuralgias: Uma revisão sistemática. Research, Society and Development, 10, 5, e6710514606, 1-14.
Silva, R. T., Bersaneti, G. T., Chideroli, R. T., Pereira, U. P., Lonni, A. A. S. G., Bigotto, B. G. & Celligoi, M. A. P. C. (2020). Propriedades biológicas da levana de Bacillus subtilis natto e do óleo essencial de canela para aplicação em formulações cosmecêuticas. Brazilian Journal of Development, 6, 5, 23009–23024.
Siqueira, E. C. (2019). Desenvolvimento de sistemas nanoestruturados à base do biopolímero levana contendo paromomicina. 2019, 161 f. Tese (Doutorado em Biologia Celular e Molecular Aplicada) - Universidade de Pernambuco, Recife.
Siqueira, E. C., Doboszewski, B., Rebouças, J. S., Pinheiro, I. O., Öner E. T. & Formiga, F. R. (2019). Molecular Modification of Levan and Biotechnological Applications of its Derivatives. In: Duru, Ö. A. (ed.). Microbial Exopolysaccharides: Current Research and Developments. Caister Academic Press, U. K., 247–294.
Siqueira, E. C., Rebouças, J. S., Pinheiro, I. O., & Formiga, F. R. (2020). Levan-based nanostructured systems: An overview. International Journal of Pharmaceutics, 580, 119242, 1–11.
Siqueira, E. C., Alves, A. A., Silva, P. E. C., Barros, M. P. S. & Houllou, L. M. (2023). Polyhydroxyalkanoates and exopolysaccharides: An alternative for valuation of the co-production of microbial biopolymers. Biotechnology Progress, 23, e3412, 1-9.
Siqueira, E. C. & Öner, E. T. (2023). Co-production of levan with other high-value bioproducts: A review. International Journal of Biological Macromolecules, 235, 123800, 1–10.
Song, Y., Zhang, H., Song, Z., Yang, Y., Zhang, S. & Wang, W. (2022). Levan polysaccharide from Erwinia herbicola protects osteoblast cells against lipopolysaccharide triggered inflammation and oxidative stress through regulation of ChemR23 for prevention of osteoporosis. Arabian Journal of Chemistry, 15, 1–7.
Srikanth, R., Reddy, C. H. S. S. S., Siddartha, G., Ramaiah, M. J. & Uppuluri, K. B. (2015a) Review on production, characterization and applications of microbial levan. Carbohydrate Polymers, 120, 102–14.
Srikanth, R., Siddartha, G., Reddy, C. H. S. S. S., Harish, B. S., Ramaiah, M. J. & Uppuluri, K. B. (2015b). Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydrate Polymers, 123, 8–16.
Souza, M. T., Silva, M. D. & Carvalho, R. (2022). Revisão integrativa: o que é e como fazer. Einstein, São Paulo, 8(1), 102–106. https://www.scielo.br/scielo.php?pid=S1679-45082010000100102&script=sci_arttext&tlng=pt.
Taylan, O., Yilmaz, M. T. & Dertli, E. (2019). Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. International Journal of Biological Macromolecules, 136, 436–444.
Veerapandian, B., Shanmugam, S. R., Sivaraman, S., Sriariyanun, M., Karuppiah, S. & Venkatachalam, P. (2023). Production and characterization of microbial levan using sugarcane (Saccharum spp.) juice and chicken feather peptone as a low-cost alternate medium. Heliyon, 9, e17424, 1–11.
Vu, T. H., Quach, N. T., Nguyen, N. A., Nguyen, H. T., Ngo, C. C., Nguyen, T. D., Ho, P.-H., Hoang, H., Chu, H. H. & Phi, Q.-T. (2021). Genome Mining Associated with Analysis of Structure, Antioxidant Activity Reveals the Potential Production of Levan-Rich Exopolysaccharides by Food-Derived Bacillus velezensis VTX20. Applied Sciences, 11, 7055.
Wang, J., Hu, S., Nie, S., Yu, Q., Xie, M. (2016). Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides. Oxidative Medicine and Cellular Longevity, 5692852, 1–13.
Wang, X., Shao, C., Liu, L., Guo, X. & Xu, Y. (2017). Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. International Journal of Biological Macromolecules, 103, 1173–1184.
Wahab, W. A. A., Shafey, H. I., Mahrous, K. F., Esawy, M. A., & Saleh, S. A. A. (2014). Coculture of bacterial levans and evaluation of its anti cancer activity against hepatocellular carcinoma cell lines. Scientific Reports, 14, 3173, 1–18.
Xia, S., Zhai, Y., Wang, X., Fan, Q., Dong, X., Chen, M., & Han, T. (2021). Phosphorylation of polysaccharides: A review on the synthesis and bioactivities. International Journal of Biological Macromolecules, 184, 946–954.
Xiao, X., Qiao, J., Wang, J., Kang, J., He, L., Li, J., Guo, Q., & Cui, S. W. (2022). Grafted ferulic acid dose-dependently enhanced the apparent viscosity and antioxidant activities of arabinoxylan. Food Hydrocolloids, 128, Article 107557.
Zhang, J., Li, Z., Zhou, L., Bao, J. & Xu, J. (2020). The modifications of a fructan from Anemarrhena asphodeloides Bunge and their antioxidant activities. International Journal of Biological Macromolecules, 164, 4435–4443.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Edmilson Clarindo de Siqueira; Bogdan Doboszewski

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.