Metronidazole: Mechanisms of action on anaerobes and factors involved in acquired resistance
DOI:
https://doi.org/10.33448/rsd-v14i1.48017Keywords:
Periodontitis, Oral health, Bacteria anaerobic, Metronidazole, Drug resistance microbial.Abstract
Anaerobic infections account for most head and neck diseases and their etiology is mixed. Although their etiological agents generally present low virulence, their populations are high and, in special cases, they can lead to the development of sepsis and infections that can compromise the patient. Metronidazole is considered the antianaerobic chemotherapy agent par excellence, but its clinical use has been extended for more than sixty years, so the resistance to this drug can limit its use. The objective of this study was to discuss the mechanism of action of metronidazole and the impact of resistance to nitroimidazoles, to illustrate the aspects capable of conditioning its clinical use. Through a review of the literature, it was found that the inhibitory action of this drug depends on the reduction of its nitro group, which allows it to interact with microbial DNA, fragmenting it. On the other hand, resistance to this agent can be natural or acquired, when it arises as a consequence of mutations or transfer of resistance genes. It is evident that most anaerobic Gram-negative oral microorganisms are susceptible to nitroimidazoles, whereas anaerobic Gram-positive microorganisms present varied susceptibility and facultative anaerobes and aerobes are, a priori, resistant.
References
Abdullah, F. M. et al. (2024). Antimicrobial management of dental infections: Updated review. Medicine, 103(27), e38630.
Alauzet, C., Marchandin, H., Lozniewski, A. (2010). New insights into Prevotella diversity and medical microbiology. Future Microbiology, 5(11), 1695-1718.
Alauzet, C. et al. (2010). Metronidazole resistance in Prevotella spp. and description of a new nim gene in Prevotella baroniae. Antimicrobial Agents and Chemotherapy, 54(1), 60-64.
Alauzet, C., Lozniewski, A., & Marchandin, H. (2019). Metronidazole resistance and nim genes in anaerobes: A review. Anaerobe, 55, 40-53.
Anyiam, I. V., & Okelue, F. (2023). Efeitos do metronidazol e da amoxicilina em anaeróbios selecionados de infecções orais. African Journal of Biology and Medical Research, 7(1), 29-46.
Asgarova, T., Kibar, F., & Gümüş, H. H. (2023). Identification of anaerobic bacteria isolated from clinical samples and determination of antibiotic resistance profiles. Journal of Biotechnology and Strategic Health Research, 7(3), 157-165.
Baumgartner, C., Xia, T. (2003). Antibiotic susceptibility of bacteria associated with endodontic abscesses. Journal of Endodontics, 29(1), 44-47.
Beigi, R. H. et al. (2004). Antimicrobial resistance associated with the treatment of bacterial vaginosis. American Journal of Obstetrics and Gynecology, 191(4), 1124-1129.
Bendesky, A., Menéndez, D., & Ostrosky-Wegman, P. (2002). Is metronidazole carcinogenic?. Mutation Research/Reviews in Mutation Research, 511(2), 133-144.
Bhat, K. G. et al. (2021). Antimicrobial susceptibility pattern of oral gram negative anaerobes from Indian subjects. Anaerobe, 70, 102367.
Breuil, J. et al. (1989). Transferable 5-nitroimidazole resistance in the Bacteroides fragilis group. Plasmid, 21(2), 151-154.
Brook, I. (2024). Overview of anaerobic infections in children and their treatment. Journal of Infection and Chemotherapy, 30, 1104 - 1113.
Brook, I.(2007). Anaerobic infections diagnosis and management. New York: Informa Healthcare USA, Inc., 2007.
Boiten, K. E. et al. (2024). Antimicrobial susceptibility profile of clinically relevant Bacteroides, Phocaeicola, Parabacteroides and Prevotella species, isolated by eight laboratories in the Netherlands. Journal of Antimicrobial Chemotherapy, 79(4), 868-874.
Boyanova, L., Kolarov, R., & Mitov, I. (2015). Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe, 31, 4-10.
Boyanova, L., Markovska, R., & Mitov, I. (2019). Multidrug resistance in anaerobes. Future Microbiology, 14(12), 1055-1064.
Boyanova, L., et al. (2024). Oxygen tolerance in anaerobes as a virulence factor and a health-beneficial property. Anaerobe, 89, 1-8.
Casarin, S. T. et al. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10 (5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924.
Cizek, A. et al. (2022). Detection of plasmid-mediated resistance to metronidazole in Clostridioides difficile from river water. Microbiology Spectrum, 10(4), e00806-22.
Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100-S20, 2010.
Cobo, F. et al. (2017). Infected breast cyst due to Prevotella buccae resistant to metronidazole. Anaerobe, 48, 177-178.
Conrads, G., et al. (2021). The antimicrobial susceptibility of Porphyromonas gingivalis: genetic repertoire, global phenotype, and review of the literature. Antibiotics, 10(12), 1438.
Dahlen, G., & Preus, H. R. (2017). Low antibiotic resistance among anaerobic Gram-negative bacteria in periodontitis 5 years following metronidazole therapy. Anaerobe, 43, 94–98.
Dingsdag, S. A., & Hunter, H. (2018). Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. Journal of Antimicrobial Chemotherapy, 73(2), 265–279.
Ducournau, A., et al. (2016). Helicobacter pylori resistance to antibiotics in 2014 in France detected by phenotypic and genotypic methods. Clinical Microbiology and Infection, 22(8), 715-718.
Dubreuil, L. J. (2024). Fifty years devoted to anaerobes: historical, lessons, and highlights. European Journal of Clinical Microbiology & Infectious Diseases, 43(1), 1-15.
Edwards, D. I. (1993). Nitroimidazole drugs-action and resistance mechanisms I. Journal of Antimicrobial Chemotherapy, 31(1), 9-20.
Elwakil, H. S. et al. (2017). The effect of iron on metronidazole activity against Trichomonas vaginalis in vitro. Experimental Parasitology, 182, 34-36.
Faria, H. V. S. et al. (2023). Ludwig’s Angina: A comprehensive analysis of diagnosis, treatment options, and their clinical correlations. Research, Society and Development, 12(10), 1-8.
Finegold, S. M. (1995). Anaerobic infections in humans: an overview. Anaerobe, 1(1), 3-9.
Freeman, C. D., Klutman, N. E., & Lamp, K. C. (1997). Metronidazole. Drugs, 54, 679-708.
Freitas, D. et al. (2019). Prevalence of antibiotic (β-lactams, tetracycline, metronidazole, erythromycin) resistance genes in periodontic infections. Clinical Research Trials, 5, 1-4.
Gaetti-Jardim Jr, E. et al. (2010). Microbiota associated with chronic osteomyelitis of the jaws. Brazilian Journal of Microbiology, 41,1056-1064.
Gal, M.; & Brazier, J. S. (2004). Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. Journal of Antimicrobial Chemotherapy, 54(1), p. 109-116.
Gil-Tomás, J. J., Jover-García, J., & Colomina-Rodríguez, J. (2018). Antibiotic susceptibility surveillance of Gram-negative anaerobes: RedMiVa 2010–2016. Enfermedades Infecciosas y Microbiología Clínica, 36(3), 200-201.
Ghotaslou, R. et al. (2018). Mechanisms of Bacteroides fragilis resistance to metronidazole. Infection, Genetics and Evolution, 64, 156-163.
Goldstein, E. J. C., & Citron, D. M. (2011). Resistance trends in antimicrobial susceptibility of anaerobic bacteria, part I. Clinical Microbiology Newsletter, 33(1), 1-8.
Gomes, B. P. F. A. et al. (2011). Analysis of the antimicrobial susceptibility of anaerobic bacteria isolated from endodontic infections in Brazil during a period of nine years. Journal of Endodontics, 37(8), 1058-1062.
Haggoud, A. et al. (1994). Nucleotide sequence analysis of two 5-nitroimidazole resistance determinants from Bacteroides strains and of a new insertion sequence upstream of the two genes. Antimicrobial agents and chemotherapy, 38(5), 1047-1051.
Handal, N. et al. (2015). Anaerobic blood culture isolates in a Norwegian university hospital: identification by MALDI‐TOF MS vs 16S rRNA sequencing and antimicrobial susceptibility profiles. Apmis, 123(9), 749-758.
Hansen, K. C. M. et al. (2017). Antimicrobial resistance in the Bacteroides fragilis group in faecal samples from patients receiving broad-spectrum antibiotics. Anaerobe, 47, 79-85.
Hazim, F. A. et al. (s.d.). Metronidazole susceptibility and resistance pattern among anaerobes causing periodontitis in tertiary care unit. Pakistan Journal of Medical & Health Sciences, 14(4), 983-986.
Head, T. W. et al. (1984). A comparative study of the effectiveness of metronidazole and penicillin V in eliminating anaerobes from postextraction bacteremias. Oral Surgery, Oral Medicine, Oral Pathology, 58(2), 152-155.
Hecht, D. W. (2004). Prevalence of antibiotic resistance in anaerobic bacteria: worrisome developments. Clinical Infectious Diseases, 39(1), 92-97.
Husain, F. et al. (2013). Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrobial Agents and Chemotherapy, 57(8), 3767-3774.
Husain, F. et al. (2014). The Ellis Island effect: a novel mobile element in a multi-drug resistant Bacteroides fragilis clinical isolate includes a mosaic of resistance genes from Gram-positive bacteria. Mobile Genetic Elements, 4(4), e29801.
Ingham, H. R. et al. (1978). Bacteroides fragilis resistant to metronidazole after long-term therapy. 1978. Lancet, 311, 214. https://doi. org/10.1016/S0140-6736(78)90655-4.
Ioannidis, I. et al. (2009). Prevalence of tetM, tetQ, nimand blaTEM genes in the oral cavities of Greek subjects: a pilot study. Journal of Clinical Periodontology, 36(7), 569-574.
Jacinto, R. C. et al. (2006). Incidence and antimicrobial susceptibility of Porphyromonas gingivalis isolated from mixed endodontic infections. International Endodontic Journal, 39(1), 62-70.
Jenks, P. J., & Edwards, D. I. (2002). Metronidazole resistance in Helicobacter pylori. International Journal of Antimicrobial Agents, 19(1), 1-7.
Johnson, P. J. (1993). Metronidazole and drug resistance. Parasitology Today, 9(5), 183-186.
Katsandri, A. et al. (2006). Dissemination of nim-class genes, encoding nitroimidazole resistance, among different species of Gram-negative anaerobic bacteria isolated in Athens, Greece. Journal of Antimicrobial Chemotherapy, 58, p. 705–706.
Kuriyama, T. et al. (2007). Antimicrobial susceptibility of 800 anaerobic isolates from patients with dentoalveolar infection to 13 oral antibiotics. Oral Microbiology and Immunology, 22, 285-288.
Lee, Y. et al. (2015). Multicenter study of antimicrobial susceptibility of anaerobic bacteria in Korea in 2012. Annals of Laboratory Medicine, 35(5), 479.
Löfmark, S., Edlund, C., & Nord, C. E. (2010). Metronidazole is still the drug of choice for treatment of anaerobic infections. Clinical Infectious Diseases, 50(1), S16-S23.
Lopez-Pintor, J. M. et al. (2021). Etiology and antimicrobial susceptibility profiles of anaerobic bacteria isolated from clinical samples in a university hospital in Madrid, Spain. Anaerobe, 72, 102446.
Lucamba, A. et al. (2024). Four-year experience with treatment protocol for odontogenic necrotizing fasciitis. Journal of Maxillofacial and Oral Surgery, 1-5.
Marchand-Austin, A. et al. (2014). Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010–2011. Anaerobe, 28, 120-125.
Mattos, P. C. (2015). Tipos de revisão de literatura. Unesp, 1-9. https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.pdf.
Nagy, E. et al. (2011). Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clinical Microbiology and Infection, 17(3), 371-379.
Narikawa, S. (1986). Distribution of metronidazole susceptibility factors in obligate anaerobes. Journal of Antimicrobial Chemotherapy, 18, 565-574.
Nasseh, I. (2019). et al. Metronidazole removal methods from aquatic media: a systematic review. Annals of Military and Health Sciences Research, 14(4), e13756.
Ng, E. et al. (2024). Antibiotic resistance in the microbiota of periodontitis patients: an update of current findings. Critical Reviews in Microbiology, 50(3), 329-340.
Nikaeen, M. et al. (2015). Occurrence of Clostridium difficile in two types of wastewater treatment plants. Journal of the Formosan Medical Association, 114(7), 663-665.
Novak, A. et al. (2015). Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a university hospital centre split, Croatia in 2013. Anaerobe, 31, 31-36.
Paunkov, A.; Sóki, J.; & Leitsch, D. (2022). Modulation of iron import and metronidazole resistance in Bacteroides fragilis harboring a nimA gene. Frontiers in Microbiology, 13, 898453.
Pence, M. A. (2019). Antimicrobial resistance in clinically important anaerobes. Clinical Microbiology Newsletter, 41(1), 1-7.
Perry, M. D. et al. (2023). First large-scale study of antimicrobial susceptibility data, and genetic resistance determinants, in Fusobacterium necrophorum highlighting the importance of continuing focused susceptibility trend surveillance. Anaerobe, 80, 102717.
Petrina, M. A. B. et al. (2017). Susceptibility of bacterial vaginosis (BV)-associated bacteria to secnidazole compared to metronidazole, tinidazole and clindamycin. Anaerobe, 47, 115-119.
Poulet, P. P., Duffaut, D., & Lodter, J. P. (1999). Metronidazole susceptibility testing of anaerobic bacteria associated with periodontal disease. Journal of Clinical Periodontology, 26(4), 261-263.
Rams, T. E., Sautter, J. D., & Van Winkelhoff, A. J. (2023). Emergence of antibiotic-resistant Porphyromonas gingivalis in United States periodontitis patients. Antibiotics, 12(11), 1584.
Rams, T. E., Degener, J. E., & Van Winkelhoff, A. J. (2014). Antibiotic resistance in human chronic periodontitis microbiota. Journal of Periodontology, 85(1), 160–169.
Rams, T. E. et al. (2011). Spiramycin resistance in human periodontitis microbiota. Anaerobe, 17(4), 201-205.
Reissier, S. et al. (2023). Recent trends in antimicrobial resistance among anaerobic clinical isolates. Microorganisms, 11(6), 1474.
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20 (2). https://doi.org/10.1590/S0103-21002007000200001.
Sandoe, J. A. T., Struthers, J. K.,& Brazier, J. S. (2001). Subdural empyema caused by Prevotella loescheii with reduced susceptibility to metronidazole. Journal of Antimicrobial Chemotherapy, 47(3), 366-367.
Senhorinho, G. N. A. et al. (2012). Occurrence and antimicrobial susceptibility of Porphyromonas spp. and Fusobacterium spp. in dogs with and without periodontitis. Anaerobe, 18(4), 381-385.
Sethi, S. et al. (2019). Emerging metronidazole resistance in Bacteroides spp. and its association with the nim gene: a study from North India. Journal of global antimicrobial resistance, 16, 210-214.
Sheikh, S. O. et al. (2015). High rate of non-susceptibility to metronidazole and clindamycin in anaerobic isolates: data from a clinical laboratory from Karachi, Pakistan. Anaerobe, 33, 132-136.
Sherrard, L. J. et al. (2016). Production of extended-spectrum β-lactamases and the potential indirect pathogenic role of Prevotella isolates from the cystic fibrosis respiratory microbiota. International Journal of Antimicrobial Agents, 47(2), 140-145.
Shimura, S. et al. (2019). Antimicrobial susceptibility surveillance of obligate anaerobic bacteria in the Kinki area. Journal of Infection and Chemotherapy, 25(11), 837-844.
Rugarabamu, S. (2017). Metronidazole resistance in anaerobes isolated from patient with oral and maxillofacial infections attending Muhimbili National Hospital, Dar-Es-Salaam, Tanzania. Tanzan Journal of Microbiology & Experimentation, 5(2), 14-12.
Sinthuchaia, D. et al. (2021). Fate and mass loading of antibiotics in hospital and domestic wastewater treatment plants in Bangkok, Thailand. Journal of Water, Sanitation and Hygiene for Development, 11(6), 959-971.
Sisson, G. et al. (2000). Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H. pylori rdxA+ (nitroreductase) gene. Journal of Bacteriology, 182, 5091-5096.
Smith, A. (2018). Metronidazole resistance: a hidden epidemic? British Dental Journal, 224, 403-404.
Smith, M. A., & Edwards, D. I. (s.d.). Redox potential and oxygen concentration as factors in the susceptibility of Helicobacter pylori to nitroheterocyclic drugs. Journal of Antimicrobial Chemotherapy, 35, 751-764.
Soares, G. et al. (2012). Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. Journal of Applied Oral Science, 20(3), 295-309.
Steel, B. J., & Wharton, C. (2020). Metronidazole and alcohol. British Dental Journal, 229(3),150-151.
Suaréz, L. J. et al. (2024). Metronidazole may display anti‐inflammatory features in periodontitis treatment: A scoping review. Molecular Oral Microbiology, 2024.
Sydenham, T. et al. (2014). Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing. Anaerobe, 31(11), 59-64.
Tan, T. Y. et al. (2017). Clinical characteristics and antimicrobial susceptibilities of anaerobic bacteremia in an acute care hospital. Anaerobe, 43, 69-74.
Thurnheer, T. et al. (2023). Antibiotic resistance among Fusobacterium, Capnocytophaga, and Leptotrichia species of the oral cavity. Oral Health & Preventive Dentistry, 4(21), 93-102.
Tomás, I. et al. (2007). Susceptibility of oral obligate anaerobes to telithromycin, moxifloxacin and a number of commonly used antibacterials. Oral Microbiology Immunology, 22(5), 298-303.
Tran, C. M., Tanaka, K., & Watanabe, K. (2013). PCR-based detection of resistance genes in anaerobic bacteria isolated from intra-abdominal infections Journal of Infection and Chemotherapy, 19(2), 279-90.
Trinh, S., & Reysset, G. (1996). Detection by PCR of the nim genes encoding 5nitroimidazole resistance in Bacteroides spp. Journal of Clinical Microbiology, 34, 2078-84.
Trinh, S. et al. (1995). Plasmids plP419 and plP421 from Bacteroides: 5-nitroimidazole resistance genes and their upstream insertion sequence elements. Microbiology, 141(4), 927-935.
Urbán, E. et al. (2021). First Hungarian case of an infection caused by multidrug resistant Bacteroides fragilis strain. Anaerobe, 31, 55-58.
Velasco-Garduño, O. et al. (2021). Influence of metronidazole on activated sludge activity. Environmental Technology, 42(18), 2815-2822.
Vivian, A. I., & Faith, O. (2024). Effects of metronidazole and amoxicillin on selected anaerobes from oral infections. African Journal of Biology and Medical Research, 7, 29-46.
Xie, Y. et al. (2014). Antimicrobial resistance and prevalence of resistance genes of obligate anaerobes isolated from periodontal abscesses. Journal of Periodontology, 85(2), 327-34.
Yunoki, T. et al. (2017). Genetic identification and antimicrobial susceptibility of clinically isolated anaerobic bacteria: a prospective multicenter surveillance study in Japan. Anaerobe, 48, 215-223.
Zhao, W. et al. (2022). Genetic Effects of metronidazole on mesophilic and thermophilic fermentation: Biodegradation mechanisms, microbial communities, and reversibility. Bioresource Technology, 362, 1-11.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nathalia Galvão Schneidereit; Ana Claudia Okamoto; Robson Varlei Ranieri; Ellen Cristina Gaetti Jardim; Elerson Gaetti Jardim Júnior

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.