Antimicrobial action and phytochemical characterization of Eucalyptus and Pine volatile oils
DOI:
https://doi.org/10.33448/rsd-v14i2.48225Keywords:
Volatile Oils, Antimicrobial activity, Pinus sp, Eucalyptus citriodora, S. aureus, E. coli, P. aeruginosa, C. albicans.Abstract
Despite scientific advancements, there has been growing global concern regarding the increasing spread of microorganisms resistant to antibiotics. Objectives: to determine the antimicrobial activity of the essential oils of Pinus sp. and Eucalyptus citriodora against clinically relevant pathogens Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. Methodology: The analysis and phytochemical characterization of the essential oils were performed using Gas Chromatography Mass Spectrometry. The antimicrobial activity was determined using the disk diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute, based on reference microorganisms cataloged in collections provided. The data obtained were analyzed using simple frequency measures and dispersion, and the collected information was recorded, tabulated, and presented in tables and graphs. Results: The main compounds found in the eucalyptus essential oil were (R) citronellal (60.71%), eucalyptol (11.70%), and isopulegol (9.91%), while in the pine essential oil, the main compounds were α-terpineol (28.78%), terpinolene (15.57%), and limonene (10.35%). Regarding antimicrobial activity, the eucalyptus essential oil showed activity against S. aureus, E. coli, and C. albicans, while the pine oil showed activity against all the microorganisms studied. Synergistic action of the essential oils was observed against the fungus C. albicans, with complete inhibition of this microorganism. Conclusion: The essential oils of eucalyptus and pine showed activity against the microorganisms studied, suggesting their potential as ingredients for the development of new products, as well as an alternative antimicrobial agent.
Downloads
References
Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. (4th Ed). Allured Publ. https://www.researchgate.net/publication/283650275_Identification_of_Essential_Oil_Components_by_Gas_ChromatographyQuadrupole_Mass_Spectroscopy
Ainane, A., Abdoul-Latif, M., Mohamed, Boujaber, Oumaskour, Khadija, Benaziz, Ainane, & Tarik. (2021). Chemical composition and antimicrobial activity of the essential oil of pistacia lentiscus L. Pharmacology Online, 2, 518–526. https://pharmacologyonline.silae.it/files/archives/2021/vol2/PhOL_2021_2_A059_AINANE.pdf.
Anvisa. (2022). Resistência antimicrobiana é ameaça global, diz OMS.
Barth, T., Habenschus, M. D., Lima Moreira, F., Ferreira, L. D. S., Lopes, N. P., & Moraes de Oliveira, A. R. (2015). In vitro metabolism of the lignan (−)-grandisin, an anticancer drug candidate, by human liver microsomes. Drug Testing and Analysis, 7(9), 780–786. https://doi.org/10.1002/dta.1743.
Bassolé, I. H., & Juliani, H. R. (2012). Essential oils in combination and their antimicrobial properties. Molecules (Basel, Switzerland), 17(4), 3989–4006. https://doi.org/10.3390/molecules17043989.
Batish, D. R., Singh, H. P., Setia, N., Kaur, S., & Kohli, R. K. (2006). Chemical Composition and Phytotoxicity of Volatile Essential Oil from Intact and Fallen Leaves of Eucalyptus citriodora. Zeitschrift Für Naturforschung C, 61(7-8), 465–471. https://doi.org/10.1515/znc-2006-7-801.
Benouaklil, F., Hamaidi-Chergui, F., Hamaidi, M. S., & Saidi, F. (2017). Chemical composition and antimicrobial properties Of Algerian Cedrus atlantica M. Essential oils. Revue Agrobiologia, 7(1), 355-362.
Bizzo, H. R., Barboza, E. G., Santos, M., & Gama, P. E. (2020). Um conjunto de planilhas eletrônicas para identificação e quantificação de constituintes de óleos essenciais. Química Nova, 43, 98-105.
Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—present status and future perspectives. Medicines, 4(3), 58.
Diallo, K., Medina, F., Belkacem, A., Jaafar, D., Badr, C., Raffetin, A., Patey, O., Matin, C., Toure, G., & Caraux-Paz, P. (2020). Impact d’une intervention par une équipe transversale d’infectiologie en chirurgie maxillo-faciale. Médecine et Maladies Infectieuses, 50(6), S48. https://doi.org/10.1016/j.medmal.2020.06.088.
Donadu, M. G., Trong Le, N., Viet Ho, D., Quoc Doan, T., Tuan Le, A., Raal, A., Usai, M., Marchetti, M., Sanna, G., Madeddu, S., Rappelli, P., Diaz, N., Molicotti, P., Carta, A., Piras, S., Usai, D., Thi Nguyen, H., Cappuccinelli, P., & Zanetti, S. (2020). Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk. Antibiotics, 9(6), 334https://doi.org/10.3390/antibiotics9060334
Dudipala, S. C., Mandapuram, P., & Ch, L. K. (2021). Eucalyptus Oil-Induced Seizures in Children: Case Reports and Review of the Literature. Journal of neurosciences in rural practice, 12(1), 112–115. https://doi.org/10.1055/s-0040-1721199.
Dutta, S. D. (2023). Determination of Antifungal Effect of Natural Oil and Synthetic Gutta Percha Solvents Against Candida Albicans: A Disc Diffusion Assay. Journal of Pharmacy and Bioallied Sciences, 15(Suppl 1), S235. https://doi.org/10.4103/jpbs.jpbs_463_22.
Egbeneje, V. O., Okhale, S., C. Imoisi, Ogbogo, I. O., & Ojo, O. A. (2023). Evaluation of the Inhibitive Properties of Silver Nanoparticles in Senna occidentalis Root Extract as Corrosion Inhibitor of Mild Steel. Tanzania Journal of Science, 49(3), 655–663. https://doi.org/10.4314/tjs.v49i3.9.
Elaissi, A., Salah, K. H., Mabrouk, S., Larbi, K. M., Chemli, R., & Harzallah-Skhiri, F. (2011). Antibacterial activity and chemical composition of 20 Eucalyptus species’ essential oils. Food Chemistry, 129(4), 1427–1434. https://doi.org/10.1016/j.foodchem.2011.05.100.
Elkady, W. M., Gonaid, M. H., Yousif, M. F., El-Sayed, M., & Omar, H. A. N. (2021). Impact of Altitudinal Variation on the Phytochemical Profile, Anthelmintic and Antimicrobial Activity of Two Pinus Species. Molecules, 26(11), 3170. https://doi.org/10.3390/molecules26113170.
Embrapa. (2014). Cultivo de pinus. Www.infoteca.cnptia.embrapa.br. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1155568.
Embrapa. (2017). Folhas - Eucalipto. Embrapa.br.
Fan, S., Chang, J., Zong, Y., Hu, G., & Jia, J. (2018). GC-MS Analysis of the Composition of the Essential Oil from Dendranthema indicum Var. Aromaticum Using Three Extraction Methods and Two Columns. Molecules, 23(3), 576. https://doi.org/10.3390/molecules23030576.
Fekih, N., Allali, H., Merghache, S., Chaïb, F., Merghache, D., El Amine, M., Djabou, N., Muselli, A., Tabti, B., & Costa, J. (2014). Chemical composition and antibacterial activity of Pinus halepensis Miller growing in West Northern of Algeria. Asian Pacific Journal of Tropical Disease, 4(2), 97–103. https://doi.org/10.1016/s2222-1808(14)60323-6.
Garzoli, S., Masci, V. L., Caradonna, V., Tiezzi, A., Giacomello, P., & Ovidi, E. (2021). Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties. Pharmaceuticals, 14(2), 134. https://doi.org/10.3390/ph14020134.
Gbd 2021 Antimicrobial Resistance Collaborators (2024). Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet (London, England), 404(10459), 1199–1226. https://doi.org/10.1016/S0140-6736(24)01867-1.
Ghaffari, T., Kafil, H. S., Asnaashari, S., Farajnia, S., Delazar, A., Baek, S. C., Hamishehkar, H., & Kim, K. H. (2019). Chemical Composition and Antimicrobial Activity of Essential Oils from the Aerial Parts of Pinus eldarica Grown in Northwestern Iran. Molecules, 24(17), 3203. https://doi.org/10.3390/molecules24173203.
Henrique, C., Santos, S., Piccoli, R., Maximiliano, V., Tebaldi, R., & Para, E. (2017). Atividade antimicrobiana de óleos essenciais e compostos isolados frente aos agentes patogênicos de origem clínica e alimentar. https://docs.bvsalud.org/biblioref/ses-sp/2017/ses-35930/ses-35930-6513.pdf.
Imoisi, C., & Michael, U. C. (2020). Comparative Physicochemical and Proximate Analyses of Different Extracts of Persea americana. Journal of Chemical Society of Nigeria, 45(6). https://doi.org/10.46602/jcsn.v45i6.539.
Imoisi, C., Iyasele, J. U., Imhontu, E. E., Orji, U. R., & Okhale, S. A. (2021). Phytochemical and Antioxidant Capability of Vitex doniana (Black Plum) Fruit. Journal of Chemical Society of Nigeria, 46(1). https://doi.org/10.46602/jcsn.v46i1.589.
Imoisi C., Iyasele J.U. & Okhale S.E. (2021). Proximate and Acute Toxicity Profile of Vitex doniana (Black Plum) Fruit. Journal of Chemical Society of Nigeria, 46(2). https://doi.org/10.46602/jcsn.v46i2.597.
Kurti, F., Giorgi, A., Beretta, G., Mustafa, B., Gelmini, F., Testa, C., Angioletti, S., Giupponi, L., Zilio, E., Pentimalli, D., & Hajdari, A. (2019). Chemical composition, antioxidant and antimicrobial activities of essential oils of different Pinus species from Kosovo. Journal of Essential Oil Research, 31(4), 263–275. https://doi.org/10.1080/10412905.2019.1584591.
Kızılarslan, Ç., & Sevg, E. (2013). Ethnobotanical uses of genus Pinus L. (Pinaceae) in Turkey. Indian Journal of Traditional Knowledge, 12(2), 209–220. https://nopr.niscpr.res.in/handle/123456789/16860.
McLafferty, F. (2016). Wiley Registry of Mass Spectral Data, (11th ed.). Wiley Interscience.
Mohamed, A. A., Behiry, S. I., Younes, H. A., Ashmawy, N. A., Salem, M. Z. M., Márquez-Molina, O., & Barbabosa-Pilego, A. (2019). Antibacterial activity of three essential oils and some monoterpenes against Ralstonia solanacearum phylotype II isolated from potato. Microbial Pathogenesis, 135, 103604. https://doi.org/10.1016/j.micpath.2019.103604.
Nazzaro, F., Fratianni, F., Coppola, R., & Feo, V. (2017). Essential Oils and Antifungal Activity. Pharmaceuticals (Basel, Switzerland), 10(4), 86. https://doi.org/10.3390/ph10040086.
Nist Mass Spectral Library. (2011). National Institute of Standards and Technology, v. 11. Gaithersburg.
Organização Pan-Americana de Saúde (Opas). (2017, February 27). OMS publica lista de bactérias para as quais se necessitam novos antibióticos urgentemente - OPAS/OMS | Organização Pan-Americana da Saúde. Www.paho.org. https://www.paho.org/pt/noticias/27-2-2017-oms-publica-lista-bacterias-para-quais-se-necessitam-novos-antibioticos.
Opas. (n.d.). Resistência antimicrobiana. Www.paho.org. Retrieved November 8, 2024, https://www.paho.org/pt/topicos/resistencia-antimicrobiana.
Opas. (2022). Relatório sinaliza aumento da resistência a antibióticos em infecções bacterianas em humanos. Www.paho.org. https://www.paho.org/pt/noticias/9-12-2022-relatorio-sinaliza-aumento-da-resistencia-antibioticos-em-infeccoes-bacterianas.
Pan American Health Organization, & Florida International University. (2018). Recommendations for Implementing Antimicrobial Stewardship Programs in Latin America and the Caribbean: Manual for Public Health Decision-Makers. Paho. https://doi.org/10.37774/9789275120408.
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.
Plant, R. M., Dinh, L., Argo, S., & Shah, M. (2019). The Essentials of Essential Oils. Advances in pediatrics, 66, 111–122. https://doi.org/10.1016/j.yapd.2019.03.005.
Ruas, A., Graça, A., Marto, J., Gonçalves, L., Oliveira, A., da Silva, A. N., Pimentel, M., Moura, A. M., Serra, A. T., Figueiredo, A. C., & Ribeiro, H. M. (2022). Chemical Characterization and Bioactivity of Commercial Essential Oils and Hydrolates Obtained from Portuguese Forest Logging and Thinning. Molecules, 27(11), 3572. https://doi.org/10.3390/molecules27113572.
Salem, M. Z. M., Elansary, H. O., Ali, H. M., El-Settawy, A. A., Elshikh, M. S., Abdel-Salam, E. M., & Skalicka-Woźniak, K. (2018). Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt. BMC Complementary and Alternative Medicine, 18(1). https://doi.org/10.1186/s12906-018-2085-0.
Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed.). Editora Erica.
Snježana Mirković, Vanja Tadić, Milenković, M. T., Dušan Ušjak, Gordana Racić, Dragica Bojović, & Žugić, A. (2024). Antimicrobial Activities of Essential Oils of Different Pinus Species from Bosnia and Herzegovina. Pharmaceutics, 16(10), 1331–1331. https://doi.org/10.3390/pharmaceutics16101331.
Visan, D.C., Oprea, E., Radulescu, V., Voiculescu, I., Biris, I.-A., Cotar, A. I., Saviuc, C., Chifiriuc, M. C., & Marinas, I. C. (2021). Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species. Pharmaceuticals, 14(11), 1159. https://doi.org/10.3390/ph14111159.
World Health Organization (Who). (2022, October 25). WHO fungal priority pathogens list to guide research, development and public health action. www.who.int. https://www.who.int/publications/i/item/9789240060241.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fábia Luane Oliveira Santos; Paulinne Moreira Lima; Jéssica Bomfim de Almeida; Juliano Geraldo Amaral; André Luís Morais Ruela; Milena Soares dos Santos

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.