Addition of prebiotic jabuticaba pulp (Myrciaria cauliflora) as sweetener in kefir
DOI:
https://doi.org/10.33448/rsd-v14i3.48556Keywords:
Fermented milk, Kefir, Sugar reduction, Prebiotic.Abstract
Kefir is a fermented dairy product rich in micronutrients that contribute to human health and well-being. Sucrose is the most used sweetener added, however, if consumed in excess can cause harm to health beyond. An alternative to sucrose is fruit pulp, such as jabuticaba, which contains natural sugars, great nutritional value and can improve flavor to the final product. This present study aimed to evaluate the effect of different concentrations of sucrose and prebiotic jabuticaba pulp in milk kefir, evaluating the physicochemical, microbiological and sensory properties for 30 days of storage. The kefir fermentation process was characterized analyzing pH, acidity, total soluble solids (TSS) content, and count of yeasts and lactic acid bacteria (LAB). Afterwards, 5 kefir formulations were prepared, with 5% and 7.5% of sucrose, 5% and 7.5% of jabuticaba pulp spray dried with polydextrose and the control without addition of sucrose. Water holding capacity (WHC), pH, TSS, and aerobic and anaerobic yeast count and LAB of formulations were performed on days 0, 15 and 30 of storage at 4 °C. Samples with sucrose showed higher sensory acceptance, and samples with jabuticaba pulp were characterized as very acid, acid aroma, liquid texture, slightly bitter and slightly sweet. The results of this study showed that the addition of prebiotic jabuticaba pulp is a good strategy to make kefir healthier.
Downloads
References
Alves, E., Ntungwe, E. N., Gregório, J., Rodrigues, L. M., Pereira-Leite, C., Caleja, C., Pereira, E., Barros, L., Aguilar-Vilas, M. V., Rosado, C., & Rijo, P. (2021). Characterization of Kefir Produced in Household Conditions: Physicochemical and Nutritional Profile, and Storage Stability. Foods 10, 1057. https://doi.org/10.3390/foods10051057
Arslan, S. (2015). A review: chemical, microbiological and nutritional characteristics of kefir. CyTA - Journal of Food 13, 340–345. https://doi.org/10.1080/19476337.2014.981588
Ban, Q., Liu, Z., Yu, C., Sun, X., Jiang, Y., Cheng, J., & Guo, M. (2020). Physiochemical, rheological, microstructural, and antioxidant properties of yogurt using monk fruit extract as a sweetener. J Dairy Sci 103, 10006–10014. https://doi.org/10.3168/jds.2020-18703
Barretto, F. J. de F. P., Clemente, H. A., Santana, A. L. B. D., & Vasconcelo, M. A. da S. (2020). Stability of encapsulated and non-encapsulated anthocyanin in yogurt produced with natural dye obtained from Solanum melongena L. Bark. Rev Bras Frutic 42. https://doi.org/10.1590/0100-29452020137
Brandão, S. C. C. (1995). Tecnologia da produção industrial do iogurte. Revista Leite e Derivados 5, 24–38.
Brazil. (2007). Instrução Normativa n° 46, de 23 de outubro de 2007. Aprova o Regulamento Técnico de Identidade e Qualidade de Leites Fermentados. Diário Oficial da União.
Carvalho, N. (2011). Efeito do método de produção de kefir na vida de prateleira e na infecção experimental com Salmonella Typhimurium em camundongos. Federal University of Minas Gerais, Belo Horizonte- MG.
Clerici, M. T. P. S., & Carvalho-Silva, L. B. (2011). Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Research International 44, 1658–1670. https://doi.org/10.1016/j.foodres.2011.04.020
Damodaran, S., & Parkin, K.L. (2019). Química de alimentos de Fennema. (5 ed.). Editora Artmed.
Davanço, F. V., Hara, E. T., Sato, R. T., Sivieri, K., Costa, M. de R., & Rensis, C.M.V.B. (2013). Avaliação do efeito do tratamento térmico na capacidade de retenção de água do iogurte através da metodologia de superfície de resposta. Revista do Instituto de Laticínios Cândido Tostes 64, 37.
Downes, F. P., & Ito, K. (2001). Compendium of Methods for the Microbiological Examination of Foods. American Public Health Association, Washington, DC.
Du, X., & Myracle, A. D. (2018). Development and evaluation of kefir products made with aronia or elderberry juice: Sensory and phytochemical characteristics. Int Food Res J 25, 1373–1383.
Farag, M. A., Jomaa, S. A., Abd El-Wahed, A., R., & El-Seedi, H. (2020). The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety. Nutrients 12, 346. https://doi.org/10.3390/nu12020346
Farnworth, E. R. (2005). Kefir? a complex probiotic. Food Science Technology Bulletin: Functional Foods 2, 1–17. https://doi.org/10.1616/1476-2137.13938
Fernandes, F. A. N., Fonteles, T. V., Rodrigues, S., de Brito, E.S., & Tiwari, B. K. (2020). Ultrasound-assisted extraction of anthocyanins and phenolics from jabuticaba (Myrciaria cauliflora) peel: kinetics and mathematical modeling. J Food Sci Technol 57, 2321–2328. https://doi.org/10.1007/s13197-020-04270-3
Fernandez-Barbero, G., Pinedo, C., Espada-Bellido, E., Ferreiro-Gonzalez, M., Carrera, C., Palma, M., & Garcia-Barroso, C. (2019). Optimization of ultrasound-assisted extraction of bioactive compounds from jabuticaba (Myrciaria cauliflora) fruit through a Box-Behnken experimental design. Food Science and Technology 39, 1018–1029. https://doi.org/10.1590/fst.16918
Garofalo, C., Osimani, A., Milanović, V., Aquilanti, L., De Filippis, F., Stellato, G., Di Mauro, S., Turchetti, B., Buzzini, P., Ercolini, D., & Clementi, F. (2015). Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol 49, 123–133. https://doi.org/10.1016/j.fm.2015.01.017
Garrote, G. L., Abraham, A. G., & De Antoni, G. L. (1997). Preservation of Kefir Grains, a Comparative Study. LWT - Food Science and Technology 30, 77–84. https://doi.org/10.1006/fstl.1996.0135
Geraldi, M. V., Betim Cazarin, C. B., Cristianini, M., Vasques, A. C. J., Geloneze, B., & Maróstica Júnior, M. R. (2022). Jabuticaba juice improves postprandial glucagon-like peptide-1 and antioxidant status in healthy adults: a randomised crossover trial. British Journal of Nutrition 128, 1545–1554. https://doi.org/10.1017/S0007114521004530
Geraldi, M. V., Betim Cazarin, C. B., Dias-Audibert, F. L., Pereira, G. A., Carvalho, G. G., Kabuki, D. Y., Catharino, R. R., Pastore, G. M., Behrens, J. H., Cristianini, M., & Maróstica Júnior, M. R. (2021). Influence of high isostatic pressure and thermal pasteurization on chemical composition, color, antioxidant properties and sensory evaluation of jabuticaba juice. LWT 139, 110548. https://doi.org/10.1016/j.lwt.2020.110548
Gökırmaklı, Ç., & Güzel-Seydim, Z. B. (2022). Water kefir grains vs. milk kefir grains: Physical, microbial and chemical comparison. J Appl Microbiol 132, 4349–4358. https://doi.org/10.1111/jam.15532
Gul, O., Mortas, M., Atalar, I., Dervisoglu, M., & Kahyaoglu, T. (2015). Manufacture and characterization of kefir made from cow and buffalo milk, using kefir grain and starter culture. J Dairy Sci 98, 1517–1525. https://doi.org/10.3168/jds.2014-8755
Hong, J.-Y., Lee, N.-K., Yi, S.-H., Hong, S.-P., & Paik, H.-D. (2019). Short communication: Physicochemical features and microbial community of milk kefir using a potential probiotic Saccharomyces cerevisiae KU200284. J Dairy Sci 102, 10845–10849. https://doi.org/10.3168/jds.2019-16384
Inada, K. O., Torres, A. G., Perrone, D., & Monteiro, M. (2018). High hydrostatic pressure processing affects the phenolic profile, preserves sensory attributes and ensures microbial quality of jabuticaba ( Myrciaria jaboticaba ) juice. J Sci Food Agric 98, 231–239. https://doi.org/10.1002/jsfa.8461
Inada, K. O. P., Oliveira, A. A., Revorêdo, T. B., Martins, A. B. N., Lacerda, E. C. Q., Freire, A. S., Braz, B. F., Santelli, R. E., Torres, A. G., Perrone, D., & Monteiro, M.C. (2015). Screening of the chemical composition and occurring antioxidants in jabuticaba (Myrciaria jaboticaba) and jussara (Euterpe edulis) fruits and their fractions. J Funct Foods 17, 422–433. https://doi.org/10.1016/j.jff.2015.06.002
Irigoyen, A. (2005). Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chem 90, 613–620. https://doi.org/10.1016/j.foodchem.2004.04.021
Kulaksız Günaydı, Z. E., & Ayar, A. (2022). Phenolic compounds, amino acid profiles, and antibacterial properties of kefir prepared using freeze‐dried Arbutus unedo L. and Tamarindus indica L. fruits and sweetened with stevia, monk fruit sweetener, and aspartame. J Food Process Preserv 46. https://doi.org/10.1111/jfpp.16767
Liutkevicius, A., & Sarkinas, A. (2004). Studies on the growth conditions and composition of kefir grain - as a food and forage biomass. Veterinarija ir Zootechnika 64–70.
Lopitz-Otsoa, F., Rementeria, A., Elguezabal, N., & Garaizar, J. (2006). Kefir: una comunidad simbiótica de bacterias y levaduras con propiedades saludables. Rev Iberoam Micol 23, 67–74. https://doi.org/10.1016/S1130-1406(06)70016-X
Macfie, H .J., Bratchell, N., Greenhoff, K., & Vallis, L. V. (1989). Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J Sens Stud 4, 129–148. https://doi.org/10.1111/j.1745-459X.1989.tb00463.x
Meilgaard, M. C., Carr, B. T., & Civille, G. V. (1999). Sensory Evaluation Techniques. CRC Press. https://doi.org/10.1201/9781003040729
Mooradian, A. D., Smith, M., & Tokuda, M. (2017). The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin Nutr ESPEN 18, 1–8. https://doi.org/10.1016/j.clnesp.2017.01.004
Morales, P., Barros, L., Dias, M. I., Santos-Buelga, C., Ferreira, I. C. F. R., Ramirez Asquieri, E., & Berrios, J. D. J. (2016). Non-fermented and fermented jabuticaba (Myrciaria cauliflora Mart.) pomaces as valuable sources of functional ingredients. Food Chem 208, 220–227. https://doi.org/10.1016/j.foodchem.2016.04.011
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.
Pereira, C. T. M., Pereira, D. M., & Bolini, H. M. A. (2024). The Influence of the Presence of Sweeteners to Substitute Sucrose in Yogurts: A Review. Journal of Culinary Science & Technology 22, 226–241. https://doi.org/10.1080/15428052.2022.2040676
Rosa, D. D., Dias, M. M. S., Grześkowiak, Ł. M., Reis, S. A., Conceição, L. L., & Peluzio, M. do C. G. (2017). Milk kefir : nutritional, microbiological and health benefits. Nutr Res Rev 30, 82–96. https://doi.org/10.1017/S0954422416000275
Saleem, K., Ikram, A., Saeed, F., Afzaal, M., Ateeq, H., Hussain, M., Raza, A., Rasheed, A., Asghar, A., & Asif Shah, M. (2023). Nutritional and functional properties of kefir: review. Int J Food Prop 26, 3261–3274. https://doi.org/10.1080/10942912.2023.2280437
Satir, G., & Guzel-Seydim, Z. B. (2016). How kefir fermentation can affect product composition? Small Ruminant Research 134, 1–7. https://doi.org/10.1016/j.smallrumres.2015.10.022
Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed.). Editora Erica.
Suriasih, K., Aryanta, W. R., Mahardika, G., & Astawa, N. M. (2012). Microbiological and Chemical Properties of Kefir Made of Bali Cattle Milk. Food Science and Quality Management 6, 12–23.
Toassi, R. F. C., & Petry, P. C. (2021). Metodologia científica aplicada à área da Saúde. 2ed. Porto Alegre: Editora da UFRGS.
Torrico, D. D., Tam, J., Fuentes, S., Gonzalez Viejo, C., & Dunshea, F. R. (2020). Consumer rejection threshold, acceptability rates, physicochemical properties, and shelf‐life of strawberry‐flavored yogurts with reductions of sugar. J Sci Food Agric 100, 3024–3035. https://doi.org/10.1002/jsfa.10333
Turker, G., Kizilkaya, B., & Cevik, N. (2013). The mineral composition of kefir produced from goat and cow milk. J Food Agric Environ 11, 62–65.
Vedamuthu, E. R. T. (1991). The yogurt story – past, present and future. Part. VI. Dairy, Food and Environmental Sanitation 11, 513–514.
Vidal, L., Tárrega, A., Antúnez, L., Ares, G., & Jaeger, S. R. (2015). Comparison of Correspondence Analysis based on Hellinger and chi-square distances to obtain sensory spaces from check-all-that-apply (CATA) questions. Food Qual Prefer 43, 106–112. https://doi.org/10.1016/j.foodqual.2015.03.003
Vieira, S. (2021). Introdução à bioestatística. Ed.GEN/Guanabara Koogan
Wan, Z., Khubber, S., Dwivedi, M., & Misra, N. (2021). Strategies for lowering the added sugar in yogurts. Food Chem 344, 128573. https://doi.org/10.1016/j.foodchem.2020.128573
WHO/FAO. (2011). Codex standard for fermented milks. [WWW Document]. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/ar/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B243-2003%252FCXS_243e.pdf.
Yilmaz, B., Sharma, H., Melekoglu, E., & Ozogul, F. (2022). Recent developments in dairy kefir-derived lactic acid bacteria and their health benefits. Food Biosci 46, 101592. https://doi.org/10.1016/j.fbio.2022.101592
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Heloisa Suzin; Fábio Cristiano Angonesi Brod; Vitor Andre Silva Vidal; Camila de Souza Paglarini

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.