Herbicide selectivity for peach palm
DOI:
https://doi.org/10.33448/rsd-v14i3.48577Keywords:
Bactris gasipaes, Herbicides, Phytotoxicity.Abstract
The peach palm (Bactris gasipaes) is a palm tree native to the Amazon and its fruits are consumed by amazonian people and are a source of income for extractivists and smallholders. In addition to the traditional use, the peach palm has been exploited for sustainable production of heart of palm due to the tillering of the plants, and the cultivated area has expanded to meet the demand of the heart of palm agroindustry. Like any crop, the peach palm suffers negative interference from weeds that cause reduced plant growth and yield and quality of the heart of palm. Weed control with herbicides is an alternative to manual control, as it is less labor-intensive, has lower operational costs, and is highly effective during the rainy season. Thus, the objective of this study was to evaluate the selectivity of the herbicides 2,4-D dimethylamine (670, 1005, 1340 and 1675 g), diuron (750, 1250, 1750 and 2250 g), metribuzin (240, 480, 720, 960 g) and fenoxaprop (55, 82.5, 110 and 137.5 g). The experiment was conducted in nursery conditions in pots with peach palm seedlings at the stage growth of four fully expanded leaves. 2,4-D, diuron and metribuzin were applied under the canopy of the seedlings and fenoxaprop on the leaves. All herbicides at all doses were selective for peach palm.
Downloads
References
ADAF. Lista de produtos. http://www.adaf.am.gov.br/lista-de-Produtos-atox.
Alban, C.; Baldet, P.; & Douce, R. (1994). Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochemical Journal, 300, 557-565.
Arias, V.; & Gamboa, C. (1995). Control químico de Spermacoce latifolia (SYN: Borreria latifolia) em uma plantación de pejibaye (Bactris gasipaes) para palmito em la zona atlántica de Costa Rica. Boletín Técnico – Estación Experimental Fabio Baudrit M, 28, 1-12.
Bartsch, K.; & Tebbe, C. C. (1989). Initial steps in the degradation of phosphinothricin (glufosinate) by soil bacteria. Applied and Environmental Microbiology, 55, 711–716.
Bogantes-Arias, A.; & Agüero-Alvarado, R. (2003). Dinámica y control de malezas en pejibaye para palmito (Bactris gasipaes K.). Agronomía Mesoamericana, 14, 41-49.
Bogantes-Arias, A.; Agüero-Alvarado, R.; & Mora, J. (2004). Palmito de pejibaye (Bactris gasipaes K.): distancias de siembra y manejo de malezas. Agronomía Mesoamericana, 15, 185-192.
Brandão, C. P. et al. (2021). Perfil e preferências do consumidor de frutos de pupunha da cidade de Belém, Pará. Research, Society and Development, 10, e28810716502.
Burton, J. D. et al. (1991). Kinetics of inhibition of acetyl-coenzyme A carboxylase by sethoxydim and haloxyfop. Pesticide Biochemistry and Physiology, 39, 100-109.
Campbell, P. L.; Beckett, R. P.; & Leslie, G. W. (2019). Weed management in sugarcane using a combination of imazapyr followed by velvet bean as a break crop. South African Journal of Plant and Soil, 36, 83-90.
Carvalho, A. V. et al. (2023). Obtenção de produtos de panificação a partir da substituição parcial de farinha de trigo por farinha de pupunha. Research, Society and Development, 12, e16112642167.
Clement, C. R. et al. (2010). Origin and domestication of native amazonian crops. Diversity, 7, 72-106.
Cordeiro, S. A., & Silva, M. L. D. (2010). Rentabilidade e risco de investimento na produção de palmito de pupunha (Bactris gasipaes Kunth.), Cerne, 16, 53-59.
DeFrank, J.; & Clement, C. R. (1995). Weed control in pejibaye heart of palm plantations in Hawaii. HortScience, 30, 1215-1216.
Devine, M.; Duke, S. O.; & Fedtke, C. (1993). Physiology of herbicide action. Englewood Cliffs: Prentice Hall. 441p
Dickson, A.; Leaf, A. L.; & Hosner, J. F. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. Forest Chronicle, 36, 10-13.
Ferreira, E. B.; Cavalcanti, P. P.; & Nogueira, D. A. (2013). ExpDes.pt: experimental designs package. http://cran.r-project.org/package=ExpDes.pt.
Flores, W. B. C. et al. (2019). A cultura da pupunha: cultivo e beneficiamento. Manaus: Editora INPA. 16 p.
Fontes, J. R. A. et al. (2025). Seletividade de herbicidas para açaizeiro. Research, Society and Development, 14, e7914248272.
Frans, R. R. et al. (1986). Experimental design and techniques for measuring and analyzing plant responses to weed control practices. in: Camper, N. D. Ed. Research Methods in Weed Science. 3 ed. Champaign IL, USA: Southern Weed Science Society. 29-46.
Gawronski, S. W.; Haderlie, L. C.; & Stark, J. C. (1987). Metribuzin metabolism as the basis for tolerance in barley (Hordeum vulgare L.). Weed Research, 27, 49-55.
Grossmann, K. (2010). Auxin herbicides: current status of mechanism and mode of action. Pest Management Science, 66, 113-120.
Haney, R. et al. (2002). Effect of roundup ultra on microbial activity and biomass from selected soils. Journal of Environmental Quality, 31, 730–735.
Hatzios, K.; Hock, B.; & Elstner, E.F. (2005). Metabolism and elimination of toxicants. In: Hock, B.; Elstner, E. F. Ed. Plant Toxicology. CRC Press. Boca Raton. 469–518.
IBGE. (2024). Levantamento Sistemático da Produção Agrícola. https://sidra.ibge.gov.br/tabela/1613#resultado.
Massignam, A. M. et al. (2014). Zoneamento climático da pupunha (Bactris gasipaes) para o Estado de Santa Catarina. Agropecuária Catarinense, 27, 86-90.
Knowles, J. R. (1989). The mechanism of biotin-dependent enzymes. Annual Reviews of Biochem, 58, 195-221.
Kuhn, A. J. et al. (2001). Uptake of mineral cations into Bactris gasipaes roots and structure of the rhizodermis. In: Horst, W. J. et al. Eds. Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Kluwer Academic Publishers. 256-257.
Lehmann, J. et al. (2000). Nitrogen use in mixed tree crop plantations with a legume cover crops. Plant and Soil, 225, 63-72.
Lopes, A. D. S. et al. (2014). Distribution of the root system of peach palm under drip irrigation. Acta Scientiarum. Agronomy, 36, 317-321.
Melo, G. B. et al. (2021). Snack extrusado a base de arroz com Spirulina platensis e farinha mista de subprodutos de laranja e palmito pupunha. Research, Society and Development, 10, e41310515142.
Nogueira, O. L. et al. (1995). A cultura da pupunha. Belém: Embrapa. Centro de Pesquisa Agroflorestal da Amazônia Oriental. 50 p.
Ofosu, R. et al. (2023). Herbicide resistance: managing weeds in a changing world. Agronomy, 13, 1595.
Oliveira Jr., R. S. et al. (2005). Diagnóstico e perspectivas do manejo de plantas daninhas na cultura da pupunha no noroeste do estado do Paraná. Acta Scientiarum. Biological Sciences, 27, 335-340.
Oliveira Junior, R. S.; & Inoue, M. H. (2011). Seletividade de herbicidas para culturas e plantas daninhas. In: Oliveira Junior, R. S.; Constantin, J.; Inoue, M. H. Eds. Biologia e manejo de plantas daninhas. Curitiba: Omnipax. 243-262.
Pascal-Lorber, S. (2010). Metabolic fate of [14C]diuron and [14C]linuron in wheat (Triticum aestivum) and radish (Raphanus sativus). Journal of Agriculture and Food Chemistry, 58, 10935–10944.
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.
Queiroz, J. R. G. et al. (2016). Herbicide selectivity in the early development of alexander palm and peach palm. Semina: Ciências Agrárias, 37, 2891-2900.
Richburg, J. T. et al. (2020). Tolerance of corn to PRE-and POST-applied photosystem II–inhibiting herbicides. Weed Technology, 34, 277-283.
Rodrigues, H. S. et al. (2017). Variabilidade genética e seleção de progênies de pupunha via modelos mistos (REML/BLUP). Acta Scientiarum. Agronomy, 39, 165-173.
Souza, L. S. A.; Silva, J. F.; & Souza, M. D. B. (2003). Composição florística de plantas daninhas em agroecossistemas de cupuaçuzeiro (Theobroma grandiflorum) e pupunheira (Bactris gasipaes). Planta Daninha, 21, 249-255.
Spacki, K. C. et al. (2022). Full exploitation of peach palm (Bactris gasipaes Kunth): State of the art and perspectives. Plants, 11, 3175.
Trebst, A. (1987). The three-dimensional structure of the herbicide binding niche on the reaction center polypeptides of photosystem II. Zeitschrift für Naturforschung C, 42, 742-750.
Vieira, S. (2021). Introdução à bioestatística. Ed. GEN/Guanabara Koogan.
Wang, X. D. et al. (2022). Molecular responses and degradation mechanisms of the herbicide diuron in rice crops. Journal of Agricultural and Food Chemistry, 70, 14352-14366.
Williams, S. L. et al. (2009). Effects of the herbicide diuron on cordgrass (Spartina foliosa) reflectance and photosynthetic parameters. Estuaries and coasts, 32, 146-157.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 José Roberto Antoniol Fontes; Ronaldo Ribeiro de Morais; André Luiz Atroch; Ricardo Lopes

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.