Recent applications of the DP4+ method in the stereochemical elucidation of complex natural alkaloids
DOI:
https://doi.org/10.33448/rsd-v14i4.48665Keywords:
Alkaloids, NMR, DP4 , DFT.Abstract
Stereochemical determination of natural compounds is essential for understanding their biological and pharmacological properties. The aim of this study is to present a narrative review in which recent studies (2021 to 2024) that used the DP4+ method to assign stereochemical configurations of natural alkaloids are presented and discussed. The DP4+ method proved to be highly effective in distinguishing between isomers with multiple chiral centers, even in complex structures. Furthermore, the reviewed compounds demonstrated a wide range of biological activities, reinforcing the importance of stereochemical rigor in natural product studies. DP4+ has established itself as an indispensable tool in natural product chemistry, especially when seeking to integrate structural rigor with pharmacological potential. Its application is expected to continue to grow in the coming years, especially with advances in simulation methods and statistical analysis.
Downloads
References
Albuquerque, A. C. F., Ribeiro, D. J., & de Amorim, M. B. (2016). Structural determination of complex natural products by quantum mechanical calculations of 13C NMR chemical shifts: Development of a parameterized protocol for terpenes. Journal of Molecular Modeling, 22(8), 183. https://doi.org/10.1007/s00894-016-3045-6
Baia, V. C., Oliveira, R. P., Alvarenga, E. S., Pinto, B. N. S., & Demuner, A. J. (2023). Exploring pyrrolizidine alkaloids in Crotalaria paulina: Isolation and identification of a promising compound. Journal of Molecular Structure, 1292, 136171. https://doi.org/10.1016/j.molstruc.2023.136171
Canuto, L. T., & Oliveira, A. A. S. de. (2020). Métodos de revisão bibliográfica nos estudos científicos. Psicologia em Revista, 26(1), Artigo 1. https://doi.org/10.5752/P.1678-9563.2020v26n1p82-100
Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., & Mota, M. S. (2020). Tipos de revisão de literatura: Considerações das editoras do Journal of Nursing and Health / Types of literature review: considerations of the editors of the Journal of Nursing and Health. Journal of Nursing and Health, 10(5), Artigo 5. https://doi.org/10.15210/jonah.v10i5.19924
Chen, H., Kong, J.-B., Zhang, L., Wang, H.-H., Cao, Y.-G., Zeng, M.-N., Li, M., Sun, Y.-J., Du, K., Xue, G.-M., Wu, Y., Zheng, X.-K., & Feng, W.-S. (2021). Lycibarbarines A–C, Three Tetrahydroquinoline Alkaloids Possessing a Spiro-Heterocycle Moiety from the Fruits of Lycium barbarum. Organic Letters, 23(3), 858–862. https://doi.org/10.1021/acs.orglett.0c04092
Chen, S.-Q., Jia, J., Hu, J.-Y., Wu, J., Sun, W.-T., Zheng, M., Wang, X., Zhu, K.-K., Jiang, C.-S., Yang, S.-P., Zhang, J., Wang, S.-B., & Cai, Y.-S. (2022). Iboga-type alkaloids with Indolizidino[8,7-b]Indole scaffold and bisindole alkaloids from Tabernaemontana bufalina Lour. Phytochemistry, 196, 113089. https://doi.org/10.1016/j.phytochem.2022.113089
Claridge, N. F. M. the D. P. L. T. D. W. (2016). High-Resolution NMR Techniques in Organic Chemistry (3rd ed. edição). Elsevier Science.
Cretton, S., Genta-Jouve, G., Kaiser, M., Mäser, P., Muñoz, O., Bürgi, T., Cuendet, M., & Christen, P. (2021). Hygroline derivatives from Schizanthus tricolor and their anti-trypanosomatid and antiplasmodial activities. Phytochemistry, 192, 112957. https://doi.org/10.1016/j.phytochem.2021.112957
Dewick, P. M. (2009). Medicinal Natural Products: A Biosynthetic Approach (3rd edition). Wiley.
Dong, Z., Pu, Q., Qiu, Y., Zhang, R., Chen, Q., Liu, Q., Khalid, A., Meng, F., Wang, G., Liao, Z., & Chen, M. (2024). (±)-Hypernumqulins A–H: Eight pairs of unexpected [2+2] cycloaddition sesquiterpenoid alkaloid with 6/6/6/4/10 ring system from Hypericum monogynum L. Bioorganic Chemistry, 150, 107564. https://doi.org/10.1016/j.bioorg.2024.107564
Fu, C.-W., Chiang, L., Chao, C.-H., Huang, Y.-L., Chiou, S.-F., Wang, L.-C., Chang, H.-W., Chen, S.-L., Wang, H.-C., Yu, M.-C., Huang, H.-C., & Sheu, J.-H. (2023). Nakamusines A−C, new 9-methyladeninium diterpenoid alkaloids from a Formosan marine sponge Agelas nakamurai. Tetrahedron, 149, 133745. https://doi.org/10.1016/j.tet.2023.133745
Grimblat, N., Zanardi, M. M., & Sarotti, A. M. (2015). Beyond DP4: An Improved Probability for the Stereochemical Assignment of Isomeric Compounds using Quantum Chemical Calculations of NMR Shifts. The Journal of Organic Chemistry, 80(24), 12526–12534. https://doi.org/10.1021/acs.joc.5b02396
Iron, M. A. (2017). Evaluation of the Factors Impacting the Accuracy of 13C NMR Chemical Shift Predictions using Density Functional Theory—The Advantage of Long-Range Corrected Functionals. Journal of Chemical Theory and Computation, 13(11), 5798–5819. https://doi.org/10.1021/acs.jctc.7b00772
Ketzel, A. F., Li, X., Kaupp, M., Sun, H., & Schattenberg, C. J. (2025). Benchmark of Density Functional Theory in the Prediction of 13C Chemical Shielding Anisotropies for Anisotropic Nuclear Magnetic Resonance-Based Structural Elucidation. Journal of Chemical Theory and Computation, 21(2), 871–885. https://doi.org/10.1021/acs.jctc.4c01407
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Medicine, 6(7), e1000100. https://doi.org/10.1371/journal.pmed.1000100
Lu, D., Jiang, P., Wang, Y., Li, Y., Naseem, A., Mohammed Algradi, A., Pan, J., Guan, W., Wu, J., Kuang, H., Yang, B., & Liu, Y. (2024). Undescribed steroidal alkaloids from the bulbs of Fritillaria ussuriensis Maxim and their anti-inflammatory activities. Phytochemistry, 225, 114172. https://doi.org/10.1016/j.phytochem.2024.114172
Luo, D., Zou, J.-W., Wang, J.-H., Tian, H., Xie, H.-Y., Zhu, T.-X., Zhu, H.-H., Deng, L.-M., Fan, C.-L., Wang, H., Wang, G.-C., & Zhang, Y.-B. (2024). Undescribed matrine-type alkaloids from Sophora alopecuroides with anti-inflammatory activity. Phytochemistry, 218, 113954. https://doi.org/10.1016/j.phytochem.2023.113954
Marcarino, M. O., Cicetti, S., Zanardi, M. M., & Sarotti, A. M. (2022). A critical review on the use of DP4+ in the structural elucidation of natural products: The good, the bad and the ugly. A practical guide. Natural Product Reports, 39(1), 58–76. https://doi.org/10.1039/D1NP00030F
Martínez-Treviño, S. H., Uc-Cetina, V., Fernández-Herrera, M. A., & Merino, G. (2020). Prediction of Natural Product Classes Using Machine Learning and 13C NMR Spectroscopic Data. Journal of Chemical Information and Modeling, 60(7), 3376–3386. https://doi.org/10.1021/acs.jcim.0c00293
Nugroho, A. E., & Morita, H. (2019). Computationally-assisted discovery and structure elucidation of natural products. Journal of Natural Medicines, 73(4), 687–695. https://doi.org/10.1007/s11418-019-01321-8
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Brasil. http://repositorio.ufsm.br/handle/1/15824
Pierens, G. K. (2014). 1H and 13C NMR scaling factors for the calculation of chemical shifts in commonly used solvents using density functional theory. Journal of Computational Chemistry, 35(18), 1388–1394. https://doi.org/10.1002/jcc.23638
Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, 20, v–vi. https://doi.org/10.1590/S0103-21002007000200001
Safi, Z. S., & Wazzan, N. (2022). DFT calculations of 1H- and 13C-NMR chemical shifts of 3-methyl-1-phenyl-4-(phenyldiazenyl)-1H-pyrazol-5-amine in solution. Scientific Reports, 12(1), 17798. https://doi.org/10.1038/s41598-022-22900-y
Smith, S. G., & Goodman, J. M. (2010). Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: The DP4 probability. Journal of the American Chemical Society, 132(37), 12946–12959. https://doi.org/10.1021/ja105035r
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Wang, L., Xia, G., Xia, H., Wei, X., Wang, Y., & Lin, S. (2023). (+)/(−)-Yanhusamides A−C, three pairs of unprecedented benzylisoquinoline-pyrrole hetero-dimeric alkaloid enantiomers from Corydalis yanhusuo. Acta Pharmaceutica Sinica B, 13(2), 754–764. https://doi.org/10.1016/j.apsb.2022.10.025
Wei, H.-L., Zhao, Y.-P., Wang, J.-X., Han, Y., Li, H., Zhou, H., Hou, T., Wang, C.-J., Yao, Y.-M., Zhang, X.-L., Liu, Y.-F., & Liang, X.-M. (2022). Menisperdaurines A-W, structurally diverse isoquinoline alkaloids from Menispermum dauricum and their dopamine D1 receptor activities. Bioorganic Chemistry, 127, 106027. https://doi.org/10.1016/j.bioorg.2022.106027
Ziegler, J., & Facchini, P. J. (2008). Alkaloid biosynthesis: Metabolism and trafficking. Annual Review of Plant Biology, 59, 735–769. https://doi.org/10.1146/annurev.arplant.59.032607.092730
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Isac George Rosset

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.