Recent applications of the DP4+ method in the stereochemical elucidation of complex natural alkaloids

Authors

DOI:

https://doi.org/10.33448/rsd-v14i4.48665

Keywords:

Alkaloids, NMR, DP4 , DFT.

Abstract

Stereochemical determination of natural compounds is essential for understanding their biological and pharmacological properties. The aim of this study is to present a narrative review in which recent studies (2021 to 2024) that used the DP4+ method to assign stereochemical configurations of natural alkaloids are presented and discussed. The DP4+ method proved to be highly effective in distinguishing between isomers with multiple chiral centers, even in complex structures. Furthermore, the reviewed compounds demonstrated a wide range of biological activities, reinforcing the importance of stereochemical rigor in natural product studies. DP4+ has established itself as an indispensable tool in natural product chemistry, especially when seeking to integrate structural rigor with pharmacological potential. Its application is expected to continue to grow in the coming years, especially with advances in simulation methods and statistical analysis.

Downloads

Download data is not yet available.

References

Albuquerque, A. C. F., Ribeiro, D. J., & de Amorim, M. B. (2016). Structural determination of complex natural products by quantum mechanical calculations of 13C NMR chemical shifts: Development of a parameterized protocol for terpenes. Journal of Molecular Modeling, 22(8), 183. https://doi.org/10.1007/s00894-016-3045-6

Baia, V. C., Oliveira, R. P., Alvarenga, E. S., Pinto, B. N. S., & Demuner, A. J. (2023). Exploring pyrrolizidine alkaloids in Crotalaria paulina: Isolation and identification of a promising compound. Journal of Molecular Structure, 1292, 136171. https://doi.org/10.1016/j.molstruc.2023.136171

Canuto, L. T., & Oliveira, A. A. S. de. (2020). Métodos de revisão bibliográfica nos estudos científicos. Psicologia em Revista, 26(1), Artigo 1. https://doi.org/10.5752/P.1678-9563.2020v26n1p82-100

Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., & Mota, M. S. (2020). Tipos de revisão de literatura: Considerações das editoras do Journal of Nursing and Health / Types of literature review: considerations of the editors of the Journal of Nursing and Health. Journal of Nursing and Health, 10(5), Artigo 5. https://doi.org/10.15210/jonah.v10i5.19924

Chen, H., Kong, J.-B., Zhang, L., Wang, H.-H., Cao, Y.-G., Zeng, M.-N., Li, M., Sun, Y.-J., Du, K., Xue, G.-M., Wu, Y., Zheng, X.-K., & Feng, W.-S. (2021). Lycibarbarines A–C, Three Tetrahydroquinoline Alkaloids Possessing a Spiro-Heterocycle Moiety from the Fruits of Lycium barbarum. Organic Letters, 23(3), 858–862. https://doi.org/10.1021/acs.orglett.0c04092

Chen, S.-Q., Jia, J., Hu, J.-Y., Wu, J., Sun, W.-T., Zheng, M., Wang, X., Zhu, K.-K., Jiang, C.-S., Yang, S.-P., Zhang, J., Wang, S.-B., & Cai, Y.-S. (2022). Iboga-type alkaloids with Indolizidino[8,7-b]Indole scaffold and bisindole alkaloids from Tabernaemontana bufalina Lour. Phytochemistry, 196, 113089. https://doi.org/10.1016/j.phytochem.2022.113089

Claridge, N. F. M. the D. P. L. T. D. W. (2016). High-Resolution NMR Techniques in Organic Chemistry (3rd ed. edição). Elsevier Science.

Cretton, S., Genta-Jouve, G., Kaiser, M., Mäser, P., Muñoz, O., Bürgi, T., Cuendet, M., & Christen, P. (2021). Hygroline derivatives from Schizanthus tricolor and their anti-trypanosomatid and antiplasmodial activities. Phytochemistry, 192, 112957. https://doi.org/10.1016/j.phytochem.2021.112957

Dewick, P. M. (2009). Medicinal Natural Products: A Biosynthetic Approach (3rd edition). Wiley.

Dong, Z., Pu, Q., Qiu, Y., Zhang, R., Chen, Q., Liu, Q., Khalid, A., Meng, F., Wang, G., Liao, Z., & Chen, M. (2024). (±)-Hypernumqulins A–H: Eight pairs of unexpected [2+2] cycloaddition sesquiterpenoid alkaloid with 6/6/6/4/10 ring system from Hypericum monogynum L. Bioorganic Chemistry, 150, 107564. https://doi.org/10.1016/j.bioorg.2024.107564

Fu, C.-W., Chiang, L., Chao, C.-H., Huang, Y.-L., Chiou, S.-F., Wang, L.-C., Chang, H.-W., Chen, S.-L., Wang, H.-C., Yu, M.-C., Huang, H.-C., & Sheu, J.-H. (2023). Nakamusines A−C, new 9-methyladeninium diterpenoid alkaloids from a Formosan marine sponge Agelas nakamurai. Tetrahedron, 149, 133745. https://doi.org/10.1016/j.tet.2023.133745

Grimblat, N., Zanardi, M. M., & Sarotti, A. M. (2015). Beyond DP4: An Improved Probability for the Stereochemical Assignment of Isomeric Compounds using Quantum Chemical Calculations of NMR Shifts. The Journal of Organic Chemistry, 80(24), 12526–12534. https://doi.org/10.1021/acs.joc.5b02396

Iron, M. A. (2017). Evaluation of the Factors Impacting the Accuracy of 13C NMR Chemical Shift Predictions using Density Functional Theory—The Advantage of Long-Range Corrected Functionals. Journal of Chemical Theory and Computation, 13(11), 5798–5819. https://doi.org/10.1021/acs.jctc.7b00772

Ketzel, A. F., Li, X., Kaupp, M., Sun, H., & Schattenberg, C. J. (2025). Benchmark of Density Functional Theory in the Prediction of 13C Chemical Shielding Anisotropies for Anisotropic Nuclear Magnetic Resonance-Based Structural Elucidation. Journal of Chemical Theory and Computation, 21(2), 871–885. https://doi.org/10.1021/acs.jctc.4c01407

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Medicine, 6(7), e1000100. https://doi.org/10.1371/journal.pmed.1000100

Lu, D., Jiang, P., Wang, Y., Li, Y., Naseem, A., Mohammed Algradi, A., Pan, J., Guan, W., Wu, J., Kuang, H., Yang, B., & Liu, Y. (2024). Undescribed steroidal alkaloids from the bulbs of Fritillaria ussuriensis Maxim and their anti-inflammatory activities. Phytochemistry, 225, 114172. https://doi.org/10.1016/j.phytochem.2024.114172

Luo, D., Zou, J.-W., Wang, J.-H., Tian, H., Xie, H.-Y., Zhu, T.-X., Zhu, H.-H., Deng, L.-M., Fan, C.-L., Wang, H., Wang, G.-C., & Zhang, Y.-B. (2024). Undescribed matrine-type alkaloids from Sophora alopecuroides with anti-inflammatory activity. Phytochemistry, 218, 113954. https://doi.org/10.1016/j.phytochem.2023.113954

Marcarino, M. O., Cicetti, S., Zanardi, M. M., & Sarotti, A. M. (2022). A critical review on the use of DP4+ in the structural elucidation of natural products: The good, the bad and the ugly. A practical guide. Natural Product Reports, 39(1), 58–76. https://doi.org/10.1039/D1NP00030F

Martínez-Treviño, S. H., Uc-Cetina, V., Fernández-Herrera, M. A., & Merino, G. (2020). Prediction of Natural Product Classes Using Machine Learning and 13C NMR Spectroscopic Data. Journal of Chemical Information and Modeling, 60(7), 3376–3386. https://doi.org/10.1021/acs.jcim.0c00293

Nugroho, A. E., & Morita, H. (2019). Computationally-assisted discovery and structure elucidation of natural products. Journal of Natural Medicines, 73(4), 687–695. https://doi.org/10.1007/s11418-019-01321-8

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Brasil. http://repositorio.ufsm.br/handle/1/15824

Pierens, G. K. (2014). 1H and 13C NMR scaling factors for the calculation of chemical shifts in commonly used solvents using density functional theory. Journal of Computational Chemistry, 35(18), 1388–1394. https://doi.org/10.1002/jcc.23638

Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, 20, v–vi. https://doi.org/10.1590/S0103-21002007000200001

Safi, Z. S., & Wazzan, N. (2022). DFT calculations of 1H- and 13C-NMR chemical shifts of 3-methyl-1-phenyl-4-(phenyldiazenyl)-1H-pyrazol-5-amine in solution. Scientific Reports, 12(1), 17798. https://doi.org/10.1038/s41598-022-22900-y

Smith, S. G., & Goodman, J. M. (2010). Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: The DP4 probability. Journal of the American Chemical Society, 132(37), 12946–12959. https://doi.org/10.1021/ja105035r

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Wang, L., Xia, G., Xia, H., Wei, X., Wang, Y., & Lin, S. (2023). (+)/(−)-Yanhusamides A−C, three pairs of unprecedented benzylisoquinoline-pyrrole hetero-dimeric alkaloid enantiomers from Corydalis yanhusuo. Acta Pharmaceutica Sinica B, 13(2), 754–764. https://doi.org/10.1016/j.apsb.2022.10.025

Wei, H.-L., Zhao, Y.-P., Wang, J.-X., Han, Y., Li, H., Zhou, H., Hou, T., Wang, C.-J., Yao, Y.-M., Zhang, X.-L., Liu, Y.-F., & Liang, X.-M. (2022). Menisperdaurines A-W, structurally diverse isoquinoline alkaloids from Menispermum dauricum and their dopamine D1 receptor activities. Bioorganic Chemistry, 127, 106027. https://doi.org/10.1016/j.bioorg.2022.106027

Ziegler, J., & Facchini, P. J. (2008). Alkaloid biosynthesis: Metabolism and trafficking. Annual Review of Plant Biology, 59, 735–769. https://doi.org/10.1146/annurev.arplant.59.032607.092730

Published

2025-04-19

Issue

Section

Review Article

How to Cite

Recent applications of the DP4+ method in the stereochemical elucidation of complex natural alkaloids. Research, Society and Development, [S. l.], v. 14, n. 4, p. e5014448665, 2025. DOI: 10.33448/rsd-v14i4.48665. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/48665. Acesso em: 28 jun. 2025.