NanoCB-Fundacentro: a tool to support the assessment and control of occupational risk involving nanomaterials

Authors

DOI:

https://doi.org/10.33448/rsd-v14i5.48673

Keywords:

Occupational risk assessment, Occupational Risk Management, Nanomaterials, Nanotechnology, Control banding.

Abstract

The growing application of nanomaterials (NMs) across a wide range of economic sectors has raised significant concerns regarding occupational risks associated with their handling. This article presents NanoCB-Fundacentro, a tool developed to support the management of occupational risks in indoor environments where NMs are present.The tool was designed based on a critical analysis of 15 control banding methodologies, enabling the identification of the most relevant variables—severity and probability—as well as the most effective risk assessment approaches. Severity-related variables include morphology, mutagenicity/genotoxicity, carcinogenicity, respiratory sensitization, reproductive toxicity, and solubility. Probability-related variables encompass dustiness, frequency, duration, and quantity of exposure, among others.A key innovation of NanoCB-Fundacentro is its integration of existing control measures in the workplace as part of the risk assessment process, going beyond the variables traditionally considered by other tools. This enables a more comprehensive and realistic evaluation framework for categorizing both the severity of potential health effects and the likelihood of exposure.The tool classifies risk levels as low, medium, high, or very high, and uniquely provides specific recommendations tailored to each level. These recommendations guide users in implementing appropriate control and mitigation strategies.In conclusion, NanoCB-Fundacentro addresses a critical gap in the evaluation of occupational risks associated with nanomaterials. It distinguishes itself through its practical applicability, methodological breadth, and user-friendly interface, making it suitable for a wide range of work contexts.

Downloads

Download data is not yet available.

References

Andrade, L. R. B. (2013). Sistemática de ações de segurança e saúde no trabalho para laboratórios de pesquisa com atividades de nanotecnologia. [Tese de doutorado, Universidade Federal do Rio Grande do Sul]. https://lume.ufrgs.br/handle/10183/96396

Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/d0ma00807a

Barros, A. M. D. B. (2024). Manual de trabalhos acadêmico-científicos: relato de experiência. Nova UBM - Centro Universitário de Barra Mansa. Gaia, A. C. A.

Batista, L. dos S., & Kumada, K. M. O. (2021). Análise metodológica sobre as diferentes configurações da pesquisa bibliográfica. Revista Brasileira de Iniciação Científica, 8, e021029. https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/113

Buitrago, E., Novello, A. M., Fink, A., Riediker, M., Rothen-Rutishauser, B., & Meyer, T. (2021). NanoSafe III: A user friendly safety management system for nanomaterials in laboratories and small facilities. Nanomaterials, 11(10), 2768. https://doi.org/10.3390/nano11102768

Cavalcante, L. T. C., & Oliveira, A. A. S. de. (2020). Métodos de revisão bibliográfica nos estudos científicos. Psicologia em Revista, 26(1), 83–102.

Chávez-Hernández, A., Velarde-Salcedo, A., Navarro-Tovara, R., & Gonzalez, L. (2024). Advances in nanomaterials safety: Emerging concerns and regulatory perspectives. Journal of Nanotoxicology and Safety, 18(1), 45–60.

Cornelissen, R., Jongeneelen, F., van Broekhuizen, P., & van Broekhuizen, F. (2011). Guidance on working safely with nanomaterials and nanoproducts: The guide for employers and employees. Dutch Ministry of Social Affairs and Employment. http://2.36.111.218/cciaa/data/docs/FNV%20-%20Guidance%20on%20safe%20handling%20nanomat%20products.pdf

Data Bridge Market Research. (n.d.). Global nanotechnology market – Industry trends and forecast to 2030. Retrieved April 11, 2025, from https://www.databridgemarketresearch.com/reports/global-nanotechnology-market

Domingues, C., Santos, A., Alvarez-Lorenzo, C., Concheiro, A., Jarak, I., Veiga, F., Barbosa, I., Dourado, M., & Figueiras, A. (2022). Where is nano today and where is it headed? A review of nanomedicine and the dilemma of nanotoxicology. ACS Nano, 16(7), 9994–10041. https://doi.org/10.1021/acsnano.2c00128

Duuren-Stuurman, B. van, Vink, S. R., Verbist, K. J. M., Heussen, H. G. A., Brouwer, D. H., Kroese, D. E. D., van Niftrik, M. F. J., Tielemans, E., & Fransman, W. (2012). Stoffenmanager Nano version 1.0: A web-based tool for risk prioritization of airborne manufactured nano objects. Annals of Occupational Hygiene, 56(5), 525–541. https://doi.org/10.1093/annhyg/mer113

European Commission. (2013). Guidance on the protection of the health and safety of workers from the potential risks related to nanomaterials at work. https://ec.europa.eu/social/BlobServlet?docId=13087&langId=en

European Commission. (2014). Guidance for employers and health and safety practitioners on working safely with nanomaterials. https://osha.europa.eu/en/tools-and-publications/publications/nanotechnologies-and-nanomaterials-guidance-workers

Fundação Jorge Duprat Figueiredo de segurança e medicina do trabalho. (2018). Nota Técnica 01/2018: Os desafios da saúde e segurança no trabalho (SST) para uma produção segura com o uso de nanotecnologia.

http://antigo.fundacentro.gov.br/arquivos/projetos/Nota%20tecnica%20%2001-2018%20Corrigida%20e%20Revisida.pdf

GoodNanoGuide. (2009). CB GoodNanoGuide. https://nanohub.org/groups/gng

Gridelet, L., Delbecq, P., Hervé, L., Boissolle, P., Fleury, D., Kowal, S., & Fayet, G. (2015). Proposal of a new risk assessment method for the handling of powders and nanomaterials. Industrial Health, 53(1), 56–68. https://doi.org/10.2486/indhealth.2014-0046

Groso, A., Petri-Fink, A., Rothen-Rutishauser, B., Hofmann, H., & Meyer, T. (2016). Engineered nanomaterials: Toward effective safety management in research laboratories. Journal of Nanobiotechnology, 14, 21. https://doi.org/10.1186/s12951-016-0169-x

Isigonis, P., Hristozov, D., Benighaus, C., Giubilato, E., Grieger, K., Pizzol, L., Semenzin, E., Linkov, I., Zabeo, A., & Marcomini, A. (2019). Risk governance of nanomaterials: Challenges and opportunities under the precautionary principle. NanoImpact, 25, 100410. https://doi.org/10.1016/j.impact.2024.100410

International Organization for Standardization. (2014). ISO/TS 12901-2: Nanotechnologies — Occupational risk management applied to engineered nanomaterials — Part 2: Use of the control banding approach. https://www.iso.org/standard/53375.html

International Organization for Standardization. (2018). ISO 45001: Occupational health and safety management systems — Requirements with guidance for use.https://www-iso-org.translate.goog/standard/63787.html?_x_tr_sl=en&_x_tr_tl=pt&_x_tr_hl=pt&_x_tr_pto=tc

International Organization for Standardization. (2023). ISO/TS 80004-1: Vocabulary — Part 1: Core terms. https://www.iso.org/standard/79525.html

Jensen, K. A. (2016). NanoSafer v.1.1 beta. http://www.nanosafer.org

Mohammadi, P., & Galera, A. (2023). Occupational exposure to nanomaterials: A bibliometric study of publications over the last decade. International Journal of Hygiene and Environmental Health, 249, 114132. https://doi.org/10.1016/j.ijheh.2023.114132

Mussi, R. F. D. F; Flores, F. F., & Almeida, C. B. D. (2021). Pressupostos para a elaboração de relato de experiência como conhecimento científico. Revista Práxis Educacional, 17(48), 60-77.

Organisation for Economic Co-operation and Development. (2019). Pysical-chemical decision framework to inform decisions for risk assessment of manufactured nanomaterials. https://one.oecd.org/document/env/jm/mono(2019)12/en/pdf

Ostiguy, C., Riediker, M., Triolet, J., Troisfontaines, P., Vernez, D., & Maisons, A. (2010). Development of a specific control banding tool for nanomaterials (ANSES Report). https://www.anses.fr/en/system/files/AP2008sa0407RaEN.pdf

Paik, S. Y., Zalk, D. M., & Swuste, P. (2008). Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Annals of Occupational Hygiene, 52(6), 419–428. https://doi.org/10.1093/annhyg/men041

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora da UAB/NTE/UFSM

Sajid, M. (2022). Nanomaterials: Types, properties, recent advances, and toxicity concerns. Current Opinion in Environmental Science & Health, 25, 100319. https://doi.org/10.1016/j.coesh.2021.100319

Sathish, T., Ahalya, N., Thirunavukkarasu, M., Senthil, T. S., Hussain, Z., Siddiqui, M. I. H., Panchal, H., & Sadasivuni, K. K. (2024). A comprehensive review on the novel approaches using nanomaterials for the remediation of soil and water pollution. Alexandria Engineering Journal, 86, 373–385. https://doi.org/10.1016/j.aej.2023.10.038

Schmidt, J. R. A. (2020). Um modelo probabilístico para avaliação do risco ocupacional envolvendo nanomateriais. [Tese de doutorado, Universidade Federal de Santa Catarina]. https://repositorio.ufsc.br/bitstream/handle/123456789/226765/PGEA0681-T.pdf?sequence=1&isAllowed=y

Schmidt, J. R. A., Arcuri, A. S. A., Andrade, L. R. B., Viegas, M. F. T. F., & Pinto, V. R. S. (2023). Comparison of specific methods for risk assessment of nanomaterials in research laboratories. Research, Society and Development, 12(14), e74121444520. https://doi.org/10.33448/rsd-v12i14.44520

Simeone, F. C., Blosi, M., Ortelli, S., & Costa, A. L. (2019). Assessing occupational risk in designs of production processes of nano-materials. NanoImpact, 14, 100149. https://doi.org/10.1016/j.impact.2019.100149

StatNano. (2025,16 de abril). Nanotechnology Products Database. http://product.statnano.com.

Van Hoornick, N., Prodanov, D., & Pardon, A. (2017). Banding approach for engineered nanomaterial risk assessment and control. Journal of Physics: Conference Series, 838(1), 012017. https://doi.org/10.1088/1742-6596/838/1/012017

Published

2025-05-23

Issue

Section

Engineerings

How to Cite

NanoCB-Fundacentro: a tool to support the assessment and control of occupational risk involving nanomaterials. Research, Society and Development, [S. l.], v. 14, n. 5, p. e8214548673, 2025. DOI: 10.33448/rsd-v14i5.48673. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/48673. Acesso em: 28 jun. 2025.