Electrocoagulation of domestic wastewater: Systematic review of operational effects

Authors

DOI:

https://doi.org/10.33448/rsd-v14i5.48700

Keywords:

Electrocoagulation, Wastewater, Sustainability, Pollution, Electrical intensity, Environmental technology.

Abstract

The objective of this review is to assess the effectiveness of electrocoagulation (EC) as a sustainable alternative for the purification of domestic wastewater effluents, considering its potential for contaminant removal, technical and economic feasibility, and its impact on public health and ecosystem protection. This systematic review evaluates EC as a sustainable option for domestic wastewater treatment, with a focus on pollutant removal. Reactor designs, electrode materials, operational parameters, and economic and technological challenges were analyzed based on existing literature. The results show that EC achieves removal efficiencies above 90% for chemical oxygen demand, turbidity, and organic matter, especially when using aluminum electrodes or aluminum-iron combinations. However, pH, electrical intensity, and reactor design are critical factors influencing performance. Although operational costs are higher than those of conventional methods, EC stands out for its versatility and lower sludge generation. This study concludes that EC has significant potential for domestic wastewater purification, although industrial-scale implementation requires optimization of energy consumption and cost reduction.

Downloads

Download data is not yet available.

Author Biography

  • Jhon Castillo, Escuela Superior Politécnica Agropecuaria de Manabí “Manuel Félix López”. Ingeniería Ambiental

     

     

References

Al-Raad, A., Hanafiah, M., Samir, A., Ajeel, M., Basheer, A., Aljayashi, T., & Toriman, M. (2019). Treatment of Saline Water Using Electrocoagulation with Combined Electrical Connection of Electrodes. Processes, 7, 242. https://doi.org/10.3390/pr7050242

Anima. (2014). Revisão bibliográfica sistemática integrativa. Biblioteca Virtual de Enfermagem. https://biblioteca.cofen.gov.br/wp-content/uploads/2019/06/manual_revisao_bibliografica-sistematica-integrativa.pdf

Armaignac, E. O., & Cortón, R. H. (2010). Tecnología química vol. xxx, no. 1, 2010 21 estudio del proceso de electrocoagulación de la vinaza empleando electrodos de hierro. 1. https://www.redalyc.org/pdf/4455/445543769003.pdf

Aryanti, P. T. P., Nugroho, F. A., Phalakornkule, C., & Kadier, A. (2024). Energy efficiency in electrocoagulation processes for sustainable water and wastewater treatment. Journal of Environmental Chemical Engineering, 12(6), Article 6. https://doi.org/10.1016/j.jece.2024.114124

Barışçı, S., & Turkay, O. (2016). Domestic greywater treatment by electrocoagulation using hybrid electrode combinations. Journal of Water Process Engineering, 10, 56-66. https://doi.org/10.1016/j.jwpe.2016.01.015

Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., & Vemuri, J. (2023a). A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle, 4, 26-36. https://doi.org/10.1016/j.watcyc.2023.01.001

Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., & Vemuri, J. (2023b). A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle, 4, 26-36. https://doi.org/10.1016/j.watcyc.2023.01.001

Cañizares, P., Martínez, F., Jiménez, C., Sáez, C., & Rodrigo, M. A. (2009). Technical and economic comparison of conventional and electrochemical coagulation processes. Journal of Chemical Technology & Biotechnology, 84(5), Article 5. https://doi.org/10.1002/jctb.2102

Ebba, M., Asaithambi, P., & Alemayehu, E. (2022). Development of electrocoagulation process for wastewater treatment: Optimization by response surface methodology. Heliyon, 8, e09383. https://doi.org/10.1016/j.heliyon.2022.e09383

Espinoza, F. R., Romani, M., Borba, C. E., Módenes, A. N., Utzig, C. F., & Dall’Oglio, I. C. (2020). A mathematical approach based on the Nernst-Planck equation for the total electric voltage demanded by the electrocoagulation process: Effects of a time-dependent electrical conductivity. Chemical Engineering Science, 220, 115626. https://doi.org/10.1016/j.ces.2020.115626

Espitia, M. Á. M., Bermúdez, J. D. C., & Valencia, R. N. A. (2022). Electrocoagulación con electrodos de aluminio para tratamiento de aguas residuales de curtiembres en Villapinzón, Cundinamarca, Colombia. Revista Mutis, 12(1), Article 1. https://doi.org/10.21789/22561498.1783

Gasmi, A., Soumaya, I., Noureddine, E., Mohamed, A. T., Djamel, G., aHMED, H. A. M., Badreddine, A., & Ayadi,l. K. (2022). Comparative Study of Chemical Coagulation and Electrocoagulation for the Treatment of Real Textile Wastewater: Optimization and Operating Cost Estimation. https://doi.org/10.1021/acsomega.2c01652

Grossetti, M. D. G. (2012). Revisión integrativa de la investigación en enfermería, el rigor científico que se le exige. Scielo Brazil, 33(2). https://doi.org/10.1590/S1983-14472012000200002

Herrera, L., Sigcha, P., & Banchón, C. (2024). Boosting BOD/COD biodegradability of automobile service stations wastewater by electrocoagulation. Water Science and Technology, 90(9), 2399-2412. https://doi.org/10.2166/wst.2024.357

Ibrahim, M. S., Abbas, S. H., & Al-Shami, A. (2023). Taguchi approach for electrocoagulation for treatment of methyl red dye from textile wastewater by using different connection electrodes. Desalination and Water Treatment, 297, 240-253. https://doi.org/10.5004/dwt.2023.29614

Javed, A., & Ayesha, M. (2023). A critical review of electrocoagulation and other electrochemical methods .International Journal of Chemical and Biochemical Sciences. https://www.iscientific.org/wp-content/uploads/2023/05/13-IJCBS-23-23-21.pdf

Javonic, T., Velinov N., Petrovic, M., Bojic, D., Radovic, M., & Bojic A. (2021). Pregled mehanizma procesa elektrokoagulacije i njegova primena za prečišćavanje otpadnih voda. https://scindeks.ceon.rs/Article.aspx?artid=2406-29792101063J

Koyuncu, S., & Arıman, S. (2020). Domestic wastewater treatment by real-scale electrocoagulation process. Water Science and Technology, 81(4), 656-667. https://doi.org/10.2166/wst.2020.128

Liu, Y., Zhang, X., Jiang, W., Wu, M., & Li, Z. (2021). Comprehensive review of floc growth and structure using electrocoagulation: Characterization, measurement, and influencing factors. Chemical Engineering Journal, 417, 129310. https://doi.org/10.1016/j.cej.2021.129310

Limón, H. R. A., Xochihua, L. J,. López, I., Hernández, M.O., & Morales, E. M (2023). Aplicaciones de la electrocoagulación en el tratamiento de agua residual industrial. Revista multidisciplinaria de ciencia, innovación y desarrollo. https://remcid.utgz.edu.mx/Archivos/Vol2/Articulo%202.1-1.pdf

López, M., Flores-Hidalgo, M. A., & Reynoso-Cuevas, L. (2021a). Electrocoagulation Process: An Approach to Continuous Processes, Reactors Design, Pharmaceuticals Removal, and Hybrid Systems—A Review. Processes, 9(10), 1831. https://doi.org/10.3390/pr9101831

López, G. M., Flores-Hidalgo, M. A., & Reynoso-Cuevas, L. (2021). Electrocoagulation Process: An Approach to Continuous Processes, Reactors Design, Pharmaceuticals Removal, and Hybrid Systems—A Review. Processes, 9(10), Article 10. https://doi.org/10.3390/pr9101831

Lu, J., Zhang, P., & Li, J. (2021). Electrocoagulation technology for water purification: An update review on reactor design and some newly concerned pollutants removal. Journal of Environmental Management, 296, 113259. https://doi.org/10.1016/j.jenvman.2021.113259

Mao, Y., Zhao, Y., & Cotterill, S. (2023). Examining Current and Future Applications of Electrocoagulation in Wastewater Treatment. Water, 15(8), Article 8. https://doi.org/10.3390/w15081455

Marlina, E., Purwanto, P., & Sudarno, S. (2021). COD removal, decolorization, and energy consumption of electrocoagulation as a wastewater treatment process. IOP Conference Series: Earth and Environmental Science, 896(1), 012043. https://doi.org/10.1088/1755-1315/896/1/012043

Mejía, A. P. R., Ruiz, Á. A., & Giraldo, L. F. G. (2006). Electrocoagulation: Challenges and opportunities in water treatment. 1(2). https://repository.unilasallista.edu.co/server/api/core/bitstreams/d486fa2e-5e9b-4217-82cd-6d0e899ca78f/content

Mousazadeh, M., Khademi, N., Kabdaşlı, I., Rezaei, S., Hajalifard, Z., Moosakhani, Z., & Hashim, K. (2023). Domestic greywater treatment using electrocoagulation-electrooxidation process: Optimisation and experimental approaches. Scientific Reports, 13(1), 15852.

https://doi.org/10.1038/s41598-023-42831-6

Muñoz, E. M. A., Cortés, B. J. D., & Agudelo, R. N. V. Electrocoagulación con electrodos de aluminio para tratamiento de aguas residuales de curtiembres en Villapinzón, Cundinamarca, Colombia. http://dx.doi.org/10.21789/22561498.1783

Ndjomgoue,Y. A. C ., & . Nanseui,N. E. P. (2022). Effect of pH on Escherichia coli Removal by Electrocoagulation and Elimination Kinetics after Treatment. https://doi.org/10.1155/2022/5249368

Omwene, P. I., Kobya, M., & Can, O. T. (2018). Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes. Ecological Engineering, 123, 65-73. https://doi.org/10.1016/j.ecoleng.2018.08.025

Othmani, A., Kadier, A., Singh, R., Igwegbe, C. A., Bouzid, M., Aquatar, M. O., Khanday, W. A., Bote, M. E., Damiri, F., Gökkuş, Ö., & Sher, F. (2022). A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment. Environmental Research, 215, 114294. https://doi.org/10.1016/j.envres.2022.114294

Pereira, A. S., Moreira, D., Parreira, F., & Shitsuka, R. (2018). Metodología da pesquisa científica. Repositorio.ufsm.br. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Soberanis, P . M., Martín, A., González, C. A., Prieto, F., Guevara-Lara, A., & García J. E. (2011). Revisión de variables de diseño y condiciones de operación en la electrocoagulación. Revista mexicana de ingeniería química, 10(2), Article 2. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S166527382011000200010&lng=es&nrm=iso&tlng=es

Qadir, M., Jones, E., y Drechsel, P. (2024). Domestic wastewater generation, treatment, and agricultural reuse. Research Square. https://doi.org/10.21203/rs.3.rs-4427017/v1

Rabayah, H., Lafi, W., Abushgair, K., & Assbeihat, J. M. (2016). Comparison of Coagulation, Electrocoagulation and Biological Techniques for the Municipal Wastewater Treatment. International Journal of Applied Engineering Research,11,11014-11024. https://www.researchgate.net/publication/312328393_Comparison_of_Coagulation_Electrocoagulation_and_Biological_Techniques_for_the_Municipal_Wastewater_Treatment

Rakhi, M. S. (2021). Wastewater Treatment Using Electrocoagulation. Asian Journal of Applied Science and Technology. National Institute of Technology (NIT) Tiruchirappalli - Department of Energy and Environment. https://ssrn.com/abstract=3846167

Rithish, R., & Savithiri, V. (2024) Comparative study of novel iron mesh and solid electrodes for TDS removal from domestic wastewater by electrocoagulation | AIP Conference Proceedings | AIP Publishing. (s. f.).

https://pubs.aip.org/aip/acp/article-abstract/3193/1/020173/3319777/Comparative-study-of-novel-iron-mesh-and-solid?redirectedFrom=fulltext

Run-Feng Chen, R. F., Wu, L. H., Zhong, C. X., & Qiao, C. H. Evaluation of electrocoagulation process for high-strength swine wastewater pretreatment. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2021.118900

Sushila, S., & Kumar, P. (2024). Pollution Load Reduction from Domestic Wastewater with Electrocoagulation Process for Agricultural Reuse. Indian Journal Of Science And Technology, 17(14), 1409-1418. https://doi.org/10.17485/IJST/v17i14.168

Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22, 154-169. https://doi.org/10.1016/j.coelec.2020.05.009

Sridevi, V., Sahithi, K., & Sujatha, V. (2020). Application of Electrocoagulation Technique in Textile Wastewater Treatment: A Review. International Journal of Advanced Science and Engineering, 06(04), Article 04. https://doi.org/10.29294/IJASE.6.4.2020.1533-1537

Tabash, I., Elnakar, H., & Khan, M. F. (2024). Optimization of iron electrocoagulation parameters for enhanced turbidity and chemical oxygen demand removal from laundry greywater. Scientific Reports, 14(1), 16468. https://doi.org/10.1038/s41598-024-67425-8

Tariq, A., & Mushtaq, A. (2023). Untreated Wastewater Reasons and Causes: A Review of Most Affected Areas and Cities. International Journal of Chemical and Biochemical. https://www.iscientific.org/wp-content/uploads/2023/05/15-IJCBS-23-23-22.pdf

Tello, M. V. C., Meneses, P. A., & Ortíz, M. P. (2019). Tratamiento de agua residual procedente de lavadoras por el método de electrocoagulación para la reutilización en riego de vegetales – Ate Vitarte. Revista del Instituto de investigación de la Facultad de minas, metalurgia y ciencias geográficas, 22(44), Article 44. https://doi.org/10.15381/iigeo.v1i1.17287

Widyarani, Wulan, D. R., Hamidah, U., Komarulzaman, A., Rosmalina, R. T., & Sintawardani, N. (2022). Domestic wastewater in Indonesia: Generation, characteristics and treatment. Environmental Science and Pollution Research International, 29(22), 32397-32414. https://doi.org/10.1007/s11356-022-19057-6

Downloads

Published

2025-05-08

Issue

Section

Review Article

How to Cite

Electrocoagulation of domestic wastewater: Systematic review of operational effects. Research, Society and Development, [S. l.], v. 14, n. 5, p. e2814548700, 2025. DOI: 10.33448/rsd-v14i5.48700. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/48700. Acesso em: 28 jun. 2025.