Electrocoagulation of domestic wastewater: Systematic review of operational effects
DOI:
https://doi.org/10.33448/rsd-v14i5.48700Keywords:
Electrocoagulation, Wastewater, Sustainability, Pollution, Electrical intensity, Environmental technology.Abstract
The objective of this review is to assess the effectiveness of electrocoagulation (EC) as a sustainable alternative for the purification of domestic wastewater effluents, considering its potential for contaminant removal, technical and economic feasibility, and its impact on public health and ecosystem protection. This systematic review evaluates EC as a sustainable option for domestic wastewater treatment, with a focus on pollutant removal. Reactor designs, electrode materials, operational parameters, and economic and technological challenges were analyzed based on existing literature. The results show that EC achieves removal efficiencies above 90% for chemical oxygen demand, turbidity, and organic matter, especially when using aluminum electrodes or aluminum-iron combinations. However, pH, electrical intensity, and reactor design are critical factors influencing performance. Although operational costs are higher than those of conventional methods, EC stands out for its versatility and lower sludge generation. This study concludes that EC has significant potential for domestic wastewater purification, although industrial-scale implementation requires optimization of energy consumption and cost reduction.
Downloads
References
Al-Raad, A., Hanafiah, M., Samir, A., Ajeel, M., Basheer, A., Aljayashi, T., & Toriman, M. (2019). Treatment of Saline Water Using Electrocoagulation with Combined Electrical Connection of Electrodes. Processes, 7, 242. https://doi.org/10.3390/pr7050242
Anima. (2014). Revisão bibliográfica sistemática integrativa. Biblioteca Virtual de Enfermagem. https://biblioteca.cofen.gov.br/wp-content/uploads/2019/06/manual_revisao_bibliografica-sistematica-integrativa.pdf
Armaignac, E. O., & Cortón, R. H. (2010). Tecnología química vol. xxx, no. 1, 2010 21 estudio del proceso de electrocoagulación de la vinaza empleando electrodos de hierro. 1. https://www.redalyc.org/pdf/4455/445543769003.pdf
Aryanti, P. T. P., Nugroho, F. A., Phalakornkule, C., & Kadier, A. (2024). Energy efficiency in electrocoagulation processes for sustainable water and wastewater treatment. Journal of Environmental Chemical Engineering, 12(6), Article 6. https://doi.org/10.1016/j.jece.2024.114124
Barışçı, S., & Turkay, O. (2016). Domestic greywater treatment by electrocoagulation using hybrid electrode combinations. Journal of Water Process Engineering, 10, 56-66. https://doi.org/10.1016/j.jwpe.2016.01.015
Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., & Vemuri, J. (2023a). A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle, 4, 26-36. https://doi.org/10.1016/j.watcyc.2023.01.001
Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., & Vemuri, J. (2023b). A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle, 4, 26-36. https://doi.org/10.1016/j.watcyc.2023.01.001
Cañizares, P., Martínez, F., Jiménez, C., Sáez, C., & Rodrigo, M. A. (2009). Technical and economic comparison of conventional and electrochemical coagulation processes. Journal of Chemical Technology & Biotechnology, 84(5), Article 5. https://doi.org/10.1002/jctb.2102
Ebba, M., Asaithambi, P., & Alemayehu, E. (2022). Development of electrocoagulation process for wastewater treatment: Optimization by response surface methodology. Heliyon, 8, e09383. https://doi.org/10.1016/j.heliyon.2022.e09383
Espinoza, F. R., Romani, M., Borba, C. E., Módenes, A. N., Utzig, C. F., & Dall’Oglio, I. C. (2020). A mathematical approach based on the Nernst-Planck equation for the total electric voltage demanded by the electrocoagulation process: Effects of a time-dependent electrical conductivity. Chemical Engineering Science, 220, 115626. https://doi.org/10.1016/j.ces.2020.115626
Espitia, M. Á. M., Bermúdez, J. D. C., & Valencia, R. N. A. (2022). Electrocoagulación con electrodos de aluminio para tratamiento de aguas residuales de curtiembres en Villapinzón, Cundinamarca, Colombia. Revista Mutis, 12(1), Article 1. https://doi.org/10.21789/22561498.1783
Gasmi, A., Soumaya, I., Noureddine, E., Mohamed, A. T., Djamel, G., aHMED, H. A. M., Badreddine, A., & Ayadi,l. K. (2022). Comparative Study of Chemical Coagulation and Electrocoagulation for the Treatment of Real Textile Wastewater: Optimization and Operating Cost Estimation. https://doi.org/10.1021/acsomega.2c01652
Grossetti, M. D. G. (2012). Revisión integrativa de la investigación en enfermería, el rigor científico que se le exige. Scielo Brazil, 33(2). https://doi.org/10.1590/S1983-14472012000200002
Herrera, L., Sigcha, P., & Banchón, C. (2024). Boosting BOD/COD biodegradability of automobile service stations wastewater by electrocoagulation. Water Science and Technology, 90(9), 2399-2412. https://doi.org/10.2166/wst.2024.357
Ibrahim, M. S., Abbas, S. H., & Al-Shami, A. (2023). Taguchi approach for electrocoagulation for treatment of methyl red dye from textile wastewater by using different connection electrodes. Desalination and Water Treatment, 297, 240-253. https://doi.org/10.5004/dwt.2023.29614
Javed, A., & Ayesha, M. (2023). A critical review of electrocoagulation and other electrochemical methods .International Journal of Chemical and Biochemical Sciences. https://www.iscientific.org/wp-content/uploads/2023/05/13-IJCBS-23-23-21.pdf
Javonic, T., Velinov N., Petrovic, M., Bojic, D., Radovic, M., & Bojic A. (2021). Pregled mehanizma procesa elektrokoagulacije i njegova primena za prečišćavanje otpadnih voda. https://scindeks.ceon.rs/Article.aspx?artid=2406-29792101063J
Koyuncu, S., & Arıman, S. (2020). Domestic wastewater treatment by real-scale electrocoagulation process. Water Science and Technology, 81(4), 656-667. https://doi.org/10.2166/wst.2020.128
Liu, Y., Zhang, X., Jiang, W., Wu, M., & Li, Z. (2021). Comprehensive review of floc growth and structure using electrocoagulation: Characterization, measurement, and influencing factors. Chemical Engineering Journal, 417, 129310. https://doi.org/10.1016/j.cej.2021.129310
Limón, H. R. A., Xochihua, L. J,. López, I., Hernández, M.O., & Morales, E. M (2023). Aplicaciones de la electrocoagulación en el tratamiento de agua residual industrial. Revista multidisciplinaria de ciencia, innovación y desarrollo. https://remcid.utgz.edu.mx/Archivos/Vol2/Articulo%202.1-1.pdf
López, M., Flores-Hidalgo, M. A., & Reynoso-Cuevas, L. (2021a). Electrocoagulation Process: An Approach to Continuous Processes, Reactors Design, Pharmaceuticals Removal, and Hybrid Systems—A Review. Processes, 9(10), 1831. https://doi.org/10.3390/pr9101831
López, G. M., Flores-Hidalgo, M. A., & Reynoso-Cuevas, L. (2021). Electrocoagulation Process: An Approach to Continuous Processes, Reactors Design, Pharmaceuticals Removal, and Hybrid Systems—A Review. Processes, 9(10), Article 10. https://doi.org/10.3390/pr9101831
Lu, J., Zhang, P., & Li, J. (2021). Electrocoagulation technology for water purification: An update review on reactor design and some newly concerned pollutants removal. Journal of Environmental Management, 296, 113259. https://doi.org/10.1016/j.jenvman.2021.113259
Mao, Y., Zhao, Y., & Cotterill, S. (2023). Examining Current and Future Applications of Electrocoagulation in Wastewater Treatment. Water, 15(8), Article 8. https://doi.org/10.3390/w15081455
Marlina, E., Purwanto, P., & Sudarno, S. (2021). COD removal, decolorization, and energy consumption of electrocoagulation as a wastewater treatment process. IOP Conference Series: Earth and Environmental Science, 896(1), 012043. https://doi.org/10.1088/1755-1315/896/1/012043
Mejía, A. P. R., Ruiz, Á. A., & Giraldo, L. F. G. (2006). Electrocoagulation: Challenges and opportunities in water treatment. 1(2). https://repository.unilasallista.edu.co/server/api/core/bitstreams/d486fa2e-5e9b-4217-82cd-6d0e899ca78f/content
Mousazadeh, M., Khademi, N., Kabdaşlı, I., Rezaei, S., Hajalifard, Z., Moosakhani, Z., & Hashim, K. (2023). Domestic greywater treatment using electrocoagulation-electrooxidation process: Optimisation and experimental approaches. Scientific Reports, 13(1), 15852.
https://doi.org/10.1038/s41598-023-42831-6
Muñoz, E. M. A., Cortés, B. J. D., & Agudelo, R. N. V. Electrocoagulación con electrodos de aluminio para tratamiento de aguas residuales de curtiembres en Villapinzón, Cundinamarca, Colombia. http://dx.doi.org/10.21789/22561498.1783
Ndjomgoue,Y. A. C ., & . Nanseui,N. E. P. (2022). Effect of pH on Escherichia coli Removal by Electrocoagulation and Elimination Kinetics after Treatment. https://doi.org/10.1155/2022/5249368
Omwene, P. I., Kobya, M., & Can, O. T. (2018). Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes. Ecological Engineering, 123, 65-73. https://doi.org/10.1016/j.ecoleng.2018.08.025
Othmani, A., Kadier, A., Singh, R., Igwegbe, C. A., Bouzid, M., Aquatar, M. O., Khanday, W. A., Bote, M. E., Damiri, F., Gökkuş, Ö., & Sher, F. (2022). A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment. Environmental Research, 215, 114294. https://doi.org/10.1016/j.envres.2022.114294
Pereira, A. S., Moreira, D., Parreira, F., & Shitsuka, R. (2018). Metodología da pesquisa científica. Repositorio.ufsm.br. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Soberanis, P . M., Martín, A., González, C. A., Prieto, F., Guevara-Lara, A., & García J. E. (2011). Revisión de variables de diseño y condiciones de operación en la electrocoagulación. Revista mexicana de ingeniería química, 10(2), Article 2. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S166527382011000200010&lng=es&nrm=iso&tlng=es
Qadir, M., Jones, E., y Drechsel, P. (2024). Domestic wastewater generation, treatment, and agricultural reuse. Research Square. https://doi.org/10.21203/rs.3.rs-4427017/v1
Rabayah, H., Lafi, W., Abushgair, K., & Assbeihat, J. M. (2016). Comparison of Coagulation, Electrocoagulation and Biological Techniques for the Municipal Wastewater Treatment. International Journal of Applied Engineering Research,11,11014-11024. https://www.researchgate.net/publication/312328393_Comparison_of_Coagulation_Electrocoagulation_and_Biological_Techniques_for_the_Municipal_Wastewater_Treatment
Rakhi, M. S. (2021). Wastewater Treatment Using Electrocoagulation. Asian Journal of Applied Science and Technology. National Institute of Technology (NIT) Tiruchirappalli - Department of Energy and Environment. https://ssrn.com/abstract=3846167
Rithish, R., & Savithiri, V. (2024) Comparative study of novel iron mesh and solid electrodes for TDS removal from domestic wastewater by electrocoagulation | AIP Conference Proceedings | AIP Publishing. (s. f.).
Run-Feng Chen, R. F., Wu, L. H., Zhong, C. X., & Qiao, C. H. Evaluation of electrocoagulation process for high-strength swine wastewater pretreatment. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2021.118900
Sushila, S., & Kumar, P. (2024). Pollution Load Reduction from Domestic Wastewater with Electrocoagulation Process for Agricultural Reuse. Indian Journal Of Science And Technology, 17(14), 1409-1418. https://doi.org/10.17485/IJST/v17i14.168
Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22, 154-169. https://doi.org/10.1016/j.coelec.2020.05.009
Sridevi, V., Sahithi, K., & Sujatha, V. (2020). Application of Electrocoagulation Technique in Textile Wastewater Treatment: A Review. International Journal of Advanced Science and Engineering, 06(04), Article 04. https://doi.org/10.29294/IJASE.6.4.2020.1533-1537
Tabash, I., Elnakar, H., & Khan, M. F. (2024). Optimization of iron electrocoagulation parameters for enhanced turbidity and chemical oxygen demand removal from laundry greywater. Scientific Reports, 14(1), 16468. https://doi.org/10.1038/s41598-024-67425-8
Tariq, A., & Mushtaq, A. (2023). Untreated Wastewater Reasons and Causes: A Review of Most Affected Areas and Cities. International Journal of Chemical and Biochemical. https://www.iscientific.org/wp-content/uploads/2023/05/15-IJCBS-23-23-22.pdf
Tello, M. V. C., Meneses, P. A., & Ortíz, M. P. (2019). Tratamiento de agua residual procedente de lavadoras por el método de electrocoagulación para la reutilización en riego de vegetales – Ate Vitarte. Revista del Instituto de investigación de la Facultad de minas, metalurgia y ciencias geográficas, 22(44), Article 44. https://doi.org/10.15381/iigeo.v1i1.17287
Widyarani, Wulan, D. R., Hamidah, U., Komarulzaman, A., Rosmalina, R. T., & Sintawardani, N. (2022). Domestic wastewater in Indonesia: Generation, characteristics and treatment. Environmental Science and Pollution Research International, 29(22), 32397-32414. https://doi.org/10.1007/s11356-022-19057-6
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jhon Castillo; Yordy Moreira; Carlos Banchón

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.