The interaction between immunity, oxidative stress and severity of childhood asthma

Authors

DOI:

https://doi.org/10.33448/rsd-v14i5.48769

Keywords:

Child Health, Asthma, Oxidative Stress, Inflammation.

Abstract

Introduction: Childhood asthma is a chronic respiratory disease that affects millions of children worldwide and represents a major public health challenge. It is characterized by airway inflammation, mainly mediated by cytokines, with exaggerated activation of innate immunity. Factors such as genetic predisposition, environmental exposure, and maternal smoking contribute to the imbalance between Th1 and Th2 helper T cells, leading to increased vascular permeability, mucus hypersecretion, bronchial hyperresponsiveness, and bronchoconstriction. Understanding these mechanisms is essential for effective disease management. Objective: This study aimed to analyze the interaction between immune response and oxidative stress in childhood asthma, as well as to identify relevant biomarkers and new therapeutic strategies. Methodology: A descriptive narrative review was conducted based on research from PubMed and Google Scholar, including 21 studies published between 2011 and 2025. Results: The interaction between environmental stressors and the airway epithelial barrier plays a critical role in the immunological response of asthma. Biomarkers such as CRTH2 and eosinophil count in sputum have proven useful in assessing disease severity. Th1 and Th2 cytokines have been implicated in asthma exacerbations, highlighting the immunological complexity of the disease. Conclusion: Although advances such as FeNO measurement and biological therapies have improved asthma management, challenges remain, particularly in treating non-Th2 phenotypes, emphasizing the need for more individualized approaches.

Downloads

Download data is not yet available.

References

Ajaz, M., Singh, I., Vugic, L., Jani, R., Rathnayake, H., Diyapaththugama, S., Mulaw, G. F., & Colson, N. J. (2025). The interplay of plant-based antioxidants, inflammation, and clinical outcomes in asthma: A systematic review. Respiratory Medicine, 236, 107918. doi.org

Busse, W. W., Morgan, W. J., Gergen, P. J., Mitchell, H. E., Gern, J. E., Liu, A. H., Gruchalla, R. S., Kattan, M., Teach, S. J., Pongracic, J. A., Chmiel, J. F., Steinbach, S. F., Calatroni, A., Togias, A., Thompson, K. M., Szefler, S. J., & Sorkness, C. A. (2011). Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. The New England Journal of Medicine, 364(11), 1005–1015. doi.org

Casarin, S. T., Fernandes, L. M., & Santos, J. S. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health, 10(5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924

Cho, Y. S., & Moon, H. B. (2010). The role of oxidative stress in the pathogenesis of asthma. Allergy, Asthma & Immunology Research, 2(3), 183–187. doi.org

Dut, R., Dizdar, E. A., Birben, E., Sackesen, C., Soyer, O. U., Besler, T., & Kalayci, O. (2008). Oxidative stress and its determinants in the airways of children with asthma. Allergy, 63(12), 1605–1609. doi.org

Gil, A. C. (2017). Como elaborar projetos de pesquisa (6ª ed.). Editora Atlas.

Gill, M. A., Liu, A. H., Calatroni, A., Krouse, R. Z., Shao, B., Schiltz, A., Gern, J. E., Togias, A., & Busse, W. W. (2018). Enhanced plasmacytoid dendritic cell antiviral responses after omalizumab. Journal of Allergy and Clinical Immunology, 141(5), 1735–1743.e9. doi.org

Gupta, A., Ikeda, M., Geng, B., Azmi, J., Price, R. G., Bradford, E. S., ... & Mepolizumab Study Group. (2019). Long-term safety and pharmacodynamics of mepolizumab in children with severe asthma with an eosinophilic phenotype. Journal of Allergy and Clinical Immunology, 144(5), 1336–1342.e7. doi.org

Han, Y., Zhang, M., Yu, S., & Jia, L. (2025). Oxidative stress in pediatric asthma: Sources, mechanisms, and therapeutic potential of antioxidants. Frontiers in Bioscience (Landmark Edition), 30(2), 22688. doi.org

Hosseini, B., Berthon, B. S., Starkey, M. R., Collison, A., McLoughlin, R. F., Williams, E. J., Nichol, K., Wark, P. A., Jensen, M. E., Da Silva Sena, C. R., Baines, K. J., Mattes, J., & Wood, L. G. (2021). Children with asthma have impaired innate immunity and increased numbers of type 2 innate lymphoid cells compared with healthy controls. Frontiers in Immunology, 12, 664668. doi.org

Ioniuc, I. K., Lupu, A., Dragan, F., Tarnita, I., Alexoae, M. M., Streanga, V., Mitrofan, C., Thet, A. A., Nedelcu, A. H., Salaru, D. L., Burlea, S. L., Mitrofan, E. C., Lupu, V. V., & Azoicai, A. N. (2024). Oxidative stress and antioxidants in pediatric asthma's evolution and management. Antioxidants (Basel, Switzerland), 13(11), 1331. doi.org

Jackson, D. J., Bacharier, L. B., Gergen, P. J., Gagalis, L., Calatroni, A., Wellford, S., Gill, M. A., Stokes, J., Liu, A. H., Gruchalla, R. S., Cohen, R. T., Makhija, M., Khurana Hershey, G. K., O’Connor, G. T., Pongracic, J. A., Sherenian, M. G., Rivera-Spoljaric, K., Zoratti, E. M., Teach, S. J., & Kattan, M.; US National Institute of Allergy and Infectious Disease's Inner City Asthma Consortium. (2022). Mepolizumab for urban children with exacerbation-prone eosinophilic asthma in the USA (MUPPITS-2): A randomised, double-blind, placebo-controlled, parallel-group trial. Lancet, 400(10351), 502–511. doi.org

Jayawardena, T. U., Sanjeewa, K. K. A., Lee, H. G., Nagahawatta, D. P., Yang, H. W., Kang, M. C., & Jeon, Y. J. (2020). Particulate matter-induced inflammation/oxidative stress in macrophages: Fucosterol from Padina boryana as a potent protector, activated via NF-κB/MAPK pathways and Nrf2/HO-1 involvement. Marine Drugs, 18(12), 628. doi.org

Jesenak, M., Zelieskova, M., & Babusikova, E. (2017). Oxidative stress and bronchial asthma in children—Causes or consequences? Frontiers in Pediatrics, 5, 162. doi.org

Just, J., Deschildre, A., Lejeune, S., & Amat, F. (2019). New perspectives of childhood asthma treatment with biologics. Pediatric Allergy and Immunology, 30(2), 159–171. doi.org

Kleniewska, P., & Pawliczak, R. (2017). The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomedicine & Pharmacotherapy, 94, 100–108. doi.org

Mattos, P. C. (2015). Tipos de revisão de literatura. UNESP. https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.pdf

Menzies-Gow, A., Corren, J., Bourdin, A., Chupp, G., Israel, E., Wechsler, M. E., Brightling, C. E., Griffiths, J. M., Hellqvist, Å., Bowen, K., Kaur, P., Almqvist, G., Ponnarambil, S., & Colice, G. (2021). Tezepelumab in adults and adolescents with severe, uncontrolled asthma. The New England Journal of Medicine, 384(19), 1800–1809. doi.org

Noutsios, G. T., & Floros, J. (2014). Childhood asthma: Causes, risks, and protective factors; a role of innate immunity. Swiss Medical Weekly, 144, w14036. doi.org

Paul, A. G. A., Muehling, L. M., Eccles, J. D., & Woodfolk, J. A. (2019). T cells in severe childhood asthma. Clinical & Experimental Allergy, 49(5), 564–581. doi.org

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [e-book gratuito]. Editora da UFSM.

Raundhal, M., Morse, C., Khare, A., Oriss, T. B., Milosevic, J., Trudeau, J., Huff, R., Pilewski, J., Holguin, F., Kolls, J., Wenzel, S., Ray, P., & Ray, A. (2015). High IFN-γ and low SLPI mark severe asthma in mice and humans. The Journal of Clinical Investigation, 125(8), 3037–3050. doi.org

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem, 20(2), 5–6. https://doi.org/10.1590/S0103-21002007000200001

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Teach, S. J., Gill, M. A., Togias, A., Sorkness, C. A., Arbes, S. J., Jr, Calatroni, A., Wildfire, J. J., Gergen, P. J., Cohen, R. T., Pongracic, J. A., Kercsmar, C. M., Khurana Hershey, G. K., Gruchalla, R. S., Liu, A. H., Zoratti, E. M., Kattan, M., Grindle, K. A., Gern, J. E., Busse, W. W., & Szefler, S. J. (2015). Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. The Journal of Allergy and Clinical Immunology, 136(6), 1476–1485. doi.org

Telcian, A. G., Zdrenghea, M. T., Edwards, M. R., Laza-Stanca, V., Mallia, P., Johnston, S. L., & Stanciu, L. A. (2017). Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antiviral Research, 137, 93–101. doi.org

Xepapadaki, P., Adachi, Y., Pozo Beltrán, C. F., El-Sayed, Z. A., Gómez, R. M., Hossny, E., Filipovic, I., Le Souef, P., Morais-Almeida, M., Miligkos, M., Nieto, A., Phipatanakul, W., Pitrez, P. M., Wang, J. Y., Wong, G. W. K., & Papadopoulos, N. G. (2022). Utility of biomarkers in the diagnosis and monitoring of asthmatic children. World Allergy Organization Journal, 16(1), 100727. doi.org

Published

2025-05-10

Issue

Section

Health Sciences

How to Cite

The interaction between immunity, oxidative stress and severity of childhood asthma. Research, Society and Development, [S. l.], v. 14, n. 5, p. e3814548769, 2025. DOI: 10.33448/rsd-v14i5.48769. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/48769. Acesso em: 28 jun. 2025.