Application of machine learning techniques in the predictability of the revenue of the Financial Compensation for Mineral Exploitation (CFEM): A case study in the Municipality of Parauapebas, State of Pará (PA), Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v14i6.48913

Keywords:

CFEM, Revenue forecasting, Mining, Parauapebas, Machine learning.

Abstract

This article aims to apply supervised machine learning models, specifically the Random Forest Regressor and K-Nearest Neighbors (KNN) algorithms, to predict the revenue collected by the Financial Compensation for Mineral Exploitation (CFEM) in the Municipality of Parauapebas, State of Pará (PA), Brazil. This article presents an application of machine learning models to forecast CFEM revenue, focusing on the municipality of Parauapebas. The research is characterized as applied, quantitative, and descriptive, using supervised regression algorithms — Random Forest and K-Nearest Neighbors — applied to public data from the National Mining Agency (ANM), from 2015 to 2024. The results showed that the Random Forest model had the best predictive performance compared to KNN, achieving a coefficient of determination (R²) above 0.90. The forecast for January 2025 indicated a revenue exceeding BRL 100 million, highlighting the potential of predictive modeling to support municipal budget planning. It is concluded that artificial intelligence techniques can significantly contribute to public management in mining municipalities, especially in scenarios with high dependence on CFEM revenues.

Downloads

Download data is not yet available.

References

Agência Nacional de Mineração. (2024). Sistema de arrecadação da CFEM. https://www.gov.br/anm

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Farias, R., Oliveira, M., & Silva, J. (2022). Previsão de receitas públicas com técnicas de inteligência artificial. Revista de Administração Pública, 56(3), 233–250. https://doi.org/10.1590/0034-761220210100

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). O’Reilly Media.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.). Elsevier.

Instituto Brasileiro de Geografia e Estatística. (2023). Estimativas populacionais para os municípios brasileiros. https://www.ibge.gov.br

Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence Review, 39(4), 261–283. https://doi.org/10.1007/s10462-011-9272-4

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer. https://doi.org/10.1007/978-1-4614-6849-3

Li, B., Hou, B., Yu, W., Lu, X., & Yang, C. (2017). Applications of artificial intelligence in intelligent manufacturing: A review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86–96. https://doi.org/10.1631/FITEE.1601885

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774. https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

Organisation for Economic Co-operation and Development. (2023). Revenue statistics in Latin America and the Caribbean 2023. https://www.oecd.org

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (e-book gratuito). Santa Maria/RS: Ed. UAB/NTE/UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf

Raschka, S., & Mirjalili, V. (2020). Python machine learning: Machine learning and deep learning with Python, Scikit-learn, and TensorFlow 2 (3rd ed.). Packt Publishing.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–1144). https://doi.org/10.1145/2939672.2939778

Shrivastava, A., Pandey, A., & Singh, N. (2024). Artificial intelligence: Evolution, methodologies, and applications. International Journal for Research in Applied Science and Engineering Technology, 12(4), 1212–1221. https://doi.org/10.22214/ijraset.2024.01234

Silva, D. P., & Souza, H. R. (2023). O uso de dados abertos para planejamento público: Estudo de caso em municípios mineradores. Revista Gestão Pública e Cidadania, 28(2), 134–152. https://doi.org/10.12660/rgpc.v28n2.2023.89123

Souza, R. M., & Costa, E. M. (2021). Aplicações de aprendizado de máquina em finanças públicas: Uma revisão sistemática. Revista Brasileira de Computação Aplicada, 13(2), 45–62. https://doi.org/10.5935/2238-1031.20210006

World Bank. (2023). Natural resources governance: Fiscal tools and revenue management. https://www.worldbank.org

Yin, R. K. (2015). O estudo de caso. Porto Alegre: Bookman.

Zhou, Z.-H. (2021). Machine learning (2nd ed.). Springer. https://doi.org/10.1007/978-981-15-5987-4

Published

2025-06-07

Issue

Section

Exact and Earth Sciences

How to Cite

Application of machine learning techniques in the predictability of the revenue of the Financial Compensation for Mineral Exploitation (CFEM): A case study in the Municipality of Parauapebas, State of Pará (PA), Brazil. Research, Society and Development, [S. l.], v. 14, n. 6, p. e2213648913, 2025. DOI: 10.33448/rsd-v14i6.48913. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/48913. Acesso em: 28 jun. 2025.