Characterization of aggregate stability in different horizons of a Yellow Latosol in wetlands of the Mato Grosso Pantanal

Authors

DOI:

https://doi.org/10.33448/rsd-v14i5.48942

Keywords:

Soil, Stability, Structure, Diameter, Wetlands.

Abstract

Soil plays an essential role for life and food production, but it is facing increasing degradation, compromising its ecological and productive functions. Aggregate stability is a fundamental indicator of the soil's structural quality, directly reflecting its capacity to support crops and environmental services. The aim of this study was to assess soil aggregation in different horizons of a profile located in the municipality of Santo Antônio do Leverger, in the state of Mato Grosso. Textural characteristics and aggregate stability were analyzed using the parameters of weighted mean diameter, geometric mean diameter and aggregate stability index. The samples were taken from six horizons defined in an open trench in Yellow Latosol, with thirty deformed samples used for laboratory analysis. Texture was determined using the pipette method, while aggregate stability was assessed using wet sieving. The results indicated that aggregate stability varied between the horizons, being higher in the surface horizon. Multivariate statistical analysis confirmed a significant effect of depth on soil structural stability. The joint assessment of the parameters proved essential for a precise understanding of structural quality, pointing to the importance of considering the complete soil profile for sustainable management and the formulation of more effective agronomic policies.

Downloads

Download data is not yet available.

References

Akamine, C. T., & Yamamoto, R. K. (2009). Estudo dirigido: Estatística descritiva (3o ed). Editora Érica.

Almeida, C. C., Fontes, M. P. F., Dias, A. C., Pereira, T. T. C., & Ker, J. C. (2021). Mineralogical, chemical and electrochemical attributes of soils. Scientia Agricola, 78(6), e20200071. https://doi.org/10.1590/1678-992x-2020-0071

Bekman, O. R., & Costa Neto, P. L. de O. (2009). Análise estatística da decisão (2o ed). Editora Blucher.

Blanco, H., & Lal, R. (2023). Soil and Water Management. Em H. Blanco & R. Lal, Soil Conservation and Management (p. 1–22). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-30341-8_1

Castro Filho, C., Muzilli, O., & Podanoschi, A. L. (1998). Estabilidade dos agregados e sua relação com o teor de carbono orgânico num latossolo roxo distrófico, em função de sistemas de plantio, rotações de culturas e métodos de preparo das amostras. Revista Brasileira de Ciência do Solo, 22(3), 527–538. https://doi.org/10.1590/S0100-06831998000300019

Cruz, D. L. D. S., Vale Júnior, J. F. D., Timoni Buchdid Camargo Neves, L., Milanez Tosin Lima, J., De Brito Carvalho, L., & De Lima Coutinho, O. (2024). Aggregate Stability Of An Ultisol In Regions Of The Brazilian Amazon. Revista de Agricultura Neotropical, 11(4). https://doi.org/10.32404/rean.v11i4.8763

Dugard, P., Todman, J., & Staines, H. (2022). Multivariate analysis of variance (MANOVA). Em P. Dugard, J. Todman, & H. Staines, Approaching Multivariate Analysis (2o ed, p. 55–82). Routledge. https://doi.org/10.4324/9781003343097-3

EMBRAPA, E. B. de P. A. (2017). Manual de métodos de análise de solo (3o ed).

https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1085209/manual-de-metodos-de-analise-de-solo

Fox, J., & Weisberg, S. (2023). Car: Companion to Applied Regression [Software]. https://cran.r-project.org/package=car.

Gil, A. C. (2017). Como elaborar projetos de pesquisa (6o ed). Editora Atlas.

Harlow, L. L., & Duerr, S. R. (2013). Multivariate Analysis of Variance. Em T. Teo (Org.), Handbook of Quantitative Methods for Educational Research (p. 123–143). SensePublishers. https://doi.org/10.1007/978-94-6209-404-8_6

Kemper, W. D., & Rosenau, R. C. (1986). Aggregate Stability and Size Distribution. Em A. Klute (Org.), SSSA Book Series (p. 425–442). Soil Science Society of America, American Society of Agronomy. https://doi.org/10.2136/sssabookser5.1.2ed.c17

Khomiakov, D. M. (2020). Soil Is an Essential Component of the Biosphere and the Global Food System (Critical Assessment of the Situation). Moscow University Soil Science Bulletin, 75(4–5), 147–158. https://doi.org/10.3103/S0147687420040055

Kodešová, R., Rohošková, M., & Žigová, A. (2009). Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia, 64(3), 550–554. https://doi.org/10.2478/s11756-009-0095-6

Ma, F., Liu, L., Han, X., Wang, Y., Wan, H., Xia, J., & Lu, X. (2024). Using a novel vector length stability index (VLSI) to evaluate soil aggregate stability: A preliminary study. CATENA, 240, 107995. https://doi.org/10.1016/j.catena.2024.107995

McFadden, L. (2013). Paleosols and wind-blown sediments | Soil Morphology in Quaternary Studies. Em Encyclopedia of Quaternary Science (p. 402–411). Elsevier. https://doi.org/10.1016/B978-0-444-53643-3.00150-3

Monteith, S., Seybold, C., & Nelson, K. (2024). A practical, reproducible laboratory method for assessing soil aggregate stability. Agrosystems, Geosciences & Environment, 7(4), e70014. https://doi.org/10.1002/agg2.70014

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Editora daa UAB/NTE/UFSM. https://repositorio.ufsm.br/handle/1/15824

Poeplau, C., Riefling, T., Schiedung, M., & Anlauf, R. (2024). Land use and soil property effects on aggregate stability assessed by three different slaking methods. European Journal of Soil Science, 75(4), e13549. https://doi.org/10.1111/ejss.13549

R, C. T. (2023). R: A Language and environment for statistical computing (Versão 4.3) [Software]. https://cran.r-project.org

Santos, H. G. dos, Jacomine, P. K. T., Anjos, L. H. C. dos, Oliveira, V. Á. de, Lumbreras, J. F., Coelho, M. R., Almeida, J. A. de, Filho, J. C. de A., Oliveira, J. B. de, & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos (5o ed). Embrapa.

Shitsuka, R., Shitsuka, R. I. C. M., Shitsuka, D. M., & Shitsuka, C. D. W. M. (2014). Matemática fundamental para tecnologia. Editora Erica.

Shukla, K. (2018). A Review Analysis on the Role of Soils in Watershed Management. Journal of Geotechnical Engineering, 5(1), 23–29.

Siebers, N., Voggenreiter, E., Joshi, P., Rethemeyer, J., & Wang, L. (2024). Synergistic relationships between the age of soil organic matter, Fe speciation, and aggregate stability. https://doi.org/10.5194/egusphere-egu24-5851

Singh, V. (2024). Land and Soil Resources. Em V. Singh, Textbook of Environment and Ecology (p. 123–141). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8846-4_8

The jamovi project (Versão 2.5). (2024). [Software]. https://www.jamovi.org.

Thoresen, K., Chandler, K. L., & Mary, W. (2021). The Earth Beneath Our Feet: An earth science unit for high-ability learners in grades 3-4 (1o ed). Routledge. https://doi.org/10.4324/9781003238775

Van Den Bergh, S. G., Chardon, I., Leite, M. F. A., Korthals, G. W., Mayer, J., Cougnon, M., Reheul, D., De Boer, W., & Bodelier, P. L. E. (2024). Soil aggregate stability governs field greenhouse gas fluxes in agricultural soils. Soil Biology and Biochemistry, 191, 109354. https://doi.org/10.1016/j.soilbio.2024.109354

Vieira, S. (2021). Introdução a Bioestatística (6o ed). Grupo Gen.

Yoder, R. E. (1936). A Direct Method of Aggregate Analysis of Soils and a Study of the Physical Nature of Erosion Losses1. Agronomy Journal, 28(5), 337–351. https://doi.org/10.2134/agronj1936.00021962002800050001x

Published

2025-05-28

Issue

Section

Agrarian and Biological Sciences

How to Cite

Characterization of aggregate stability in different horizons of a Yellow Latosol in wetlands of the Mato Grosso Pantanal. Research, Society and Development, [S. l.], v. 14, n. 5, p. e11914548942, 2025. DOI: 10.33448/rsd-v14i5.48942. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/48942. Acesso em: 28 jun. 2025.