Biochar: Physicochemical characteristics and use in agriculture. A review
DOI:
https://doi.org/10.33448/rsd-v14i6.48949Keywords:
Biochar, Hydraulic properties, Improving soil quality.Abstract
Biochar has aroused increasing interest due to its wide potential for application in waste management, renewable energy generation, carbon sequestration, mitigation of greenhouse gas (GHG) emissions, as well as in the remediation of soils and water bodies, as well as its potential to improve soil fertility and promote plant growth. This review aims to describe chemical, physical and biological aspects of biochars and their technological application in agriculture. To carry out this work, the descriptors “biochar”, “biochar”, “biochar and agricultural” and “biochar application” were used for the bibliographic survey. It was observed from the review that biochar has variable and inconsistent physicochemical characteristics, depending on its origin, pyrolysis temperature and mineral composition of the original biomass. In general, biochar has important characteristics for desert soils or soils with low rainfall, such as the soils of the Brazilian semiarid region, since it has the effects of reducing soil density, increasing soil porosity and, consequently, increasing water retention in the soil, increasing water availability for plants and greater efficiency in water use. The review showed that the soil C/N ratio increases with the use of biochar, which contributes to the microbiological activity of the soil, promoting positive changes. It was also shown that it increases soil pH, favoring availability in acidic soils, to the detriment of the fertilizer function.
Downloads
References
Ajeng, A. A., Abdullah, R., Ling, T. C., Ismail, S., Lau, B. F., Ong, M. H. C., Chew, K. W., Show, P. L., & Chang, J. (2020). Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environmental Technology & Innovation, 20, 101168.
Brewer, C. E. (2012). Biochar characterization and engineering (Tese de doutorado). Iowa State University, Ames.
Caldas, M. A. E. (1986). Estudos de revisão de literatura: Fundamentação e estratégia metodológica. Hucitec.
Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., & Mota, M. S. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10(5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924.
Chen, H., Zhang, J., Tang, L., Su, M., Tian, D., Zhang, L., Li, Z., & Hu, S. (2019). Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria. Environment International, 127, 395–401.
Di Blasi, C., Tanzi, V., & Lanzetta, M. (1997). A study on the production of agricultural residues in Italy. Biomass and Bioenergy, 12(5), 321–331.
Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and technology (p. 20). Earthscan.
El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Songe, H., Sarmah, A. K., Zimmerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554.
Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51, 2061–2069.
Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (2001). The “Terra Preta” phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88, 37–41.
Głodowska, M., Husk, B., Schwinghamer, T., & Smith, D. (2016). Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agronomy for Sustainable Development, 36, 1–10.
Gray, M., Johnson, M. G., Dragila, M. I., & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, 196–205.
Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., Ammara, U., Ok, Y. S., & Siddique, K. H. (2017). Biochar for crop production: Potential benefits and risks. Journal of Soils and Sediments, 17, 685–716.
Jeffery, S., Meinders, M. B. J., Stoof, C. R., Bezemer, T. M., van de Voorde, T. F. J., Mommer, L., & van Groenigen, J. W. (2015). Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma, 251–252, 47–54.
Jindo, K., Audette, Y., Higashikawa, F. S., Silva, C. A., Akashi, K., Mastrolonardo, G., Sánchez-Monedero, M. A., & Mondini, C. (2020). Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Chemical and Biological Technologies in Agriculture, 7(15), 1–12.
Kalinke, C. (2019). Biochar quimicamente ativado: Obtenção, caracterização e aplicação no desenvolvimento de sensores eletroquímicos (Tese de doutorado). Universidade Federal do Paraná.
Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environment International, 87, 1–12.
Laghari, M., Mirjat, M. S., Hu, Z., Fazal, S., Xiao, B., Hu, M., Chen, Z., & Guo, D. (2015). Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena, 135, 313–320.
Laird, D. A., Rogovska, N., García-Pérez, M., Collins, H., Streubel, J., & Smith, M. (2011). Pyrolysis and biochar-opportunities for distributed production and soil quality enhancement. In K. Newell (Ed.), Sustainable alternative fuel feedstock opportunities, challenges and roadmaps for six U.S. regions (Chap. 16). USDA.
Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158, 436–442.
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.). Routledge.
Lima, S. L., Marimon-Junior, B. H., Tamiozzo, S., Petter, F. A., Marimon, B. S., & Abreu, M. F. (2016). Biochar adicionado em Latossolo Vermelho beneficia o desenvolvimento de mudas de beterraba? Comunicata Scientiae, 7(1), 97–103.
Mangrich, A. S., Maia, C. M. B. F., & Novotny, E. H. (2011). Biocarvão: As terras pretas de índios e o sequestro de carbono. Revista Ciência Hoje, 47, 48–52.
Mia, S., Dijkstra, F. A., & Singh, B. (2017). Long-term aging of biochar: A molecular understanding with agricultural and environmental implications. In Advances in Agronomy (Vol. 141, pp. 1–51). Elsevier.
Palansooriya, K. N., Wong, J. T. F., & Hashimoto, Y. (2019). Response of microbial communities to biochar-amended soils: A critical review. Biochar, 1, 3–22.
Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N. D., & Calderón, F. J. (2014). Soil chemical insights provided through vibrational spectroscopy. Advances in Agronomy, 126, 1–148.
Pariyar, P., Kumari, K., Jain, M. K., & Jadhao, P. S. (2020). Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Science of the Total Environment, 713, 136433.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [free e-book]. Editora da UAB/NTE/UFSM.
Rawat, J., Saxena, J., & Sanwal, P. (2019). Biochar: A sustainable approach for improving plant growth and soil properties. In V. Abrol & P. Sharma (Eds.), Biochar - An imperative amendment for soil and the environment (pp. 1–18). Intech Open.
Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055.
Ronsse, F., Van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. Global Change Biology Bioenergy, 5, 104–115.
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20 (2). https://doi.org/10.1590/S0103-21002007000200001
Shaaban, A., Se, S., Dimin, M. F., Juoi, J. M., Haizal, M., Husin, M., Merry, N., & Mitan, M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 31–39.
Silva, W. M. (2016). Aplicação de biochar de resíduos de café em Neossolo Regolítico: Efeitos nas características químicas e biológicas e na produção de milho e feijão (Dissertação de mestrado). Universidade Federal Rural de Pernambuco.
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2009). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82.
Song, S., Arora, S., Laserna, A. K., Shen, Y., Thian, B. W. Y., Cheong, J. C., ... Wang, C. (2020). Biochar for urban agriculture: Impacts on soil chemical characteristics and on Brassica rapa growth, nutrient content and metabolism over multiple growth cycles. Science of the Total Environment, 727, 138742.
Sousa, A. A. T. C. (2015). Biochar de lodo de esgoto: Efeitos no solo e na planta no cultivo de rabanete (Tese de doutorado). Universidade de Brasília.
Sun, D., Meng, J., Liang, H., Yang, E., Huang, Y., Chen, W., Jiang, L., Lan, Y., Zhang, W., & Gao, J. (2015). Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. Journal of Soils and Sediments, 15, 271–281.
Tan, Y. L., Abdullah, A. Z., & Hameed, B. H. (2017). Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: Pyrolysis behavior and product analyses. Bioresource Technology, 243, 85–92.
Villagra-Mendoza, K., & Horn, R. (2018). Effect of biochar addition on hydraulic functions of two textural soils. Geoderma, 326, 88–95.
Wang, F., Wang, X., & Song, N. (2021). Biochar and vermicompost improve the soil properties and the yield and quality of cucumber (Cucumis sativus L.) grown in plastic shed soil continuously cropped for different years. Agriculture, Ecosystems & Environment, 315, 107425.
Wang, Y., Yin, R., & Liu, R. (2014). Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. Journal of Analytical and Applied Pyrolysis, 110, 375–381.
Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insights into multilevel structures of biochars and their potential environmental applications: A critical review. Environmental Science & Technology, 52, 5027–5047.
Yargicoglu, E. N., Yamini, B., Reddy, K. R., & Spokas, K. (2015). Physical and chemical characterization of waste wood derived biochars. Waste Management, 36, 256–268.
Yuan, P., Wang, J., Pan, Y., Shen, B., & Wu, C. (2019). Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment, 659, 473–490.
Zhang, J., Lü, F., Zhang, H., Shao, L., Chen, D., & He, P. (2015). Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Scientific Reports, 5, 1–8
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Natália Teixeira de Lima; Thiago Francisco de Souza Carneiro Neto; Marina Souza Pereira Matos; Fabio Freire de Oliveira; Cícero Antônio de Sousa Araújo; Gilberto Saraiva Tavares Filho

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.