Nutritional challenges in microgravity environments: A view of alimentation in space

Authors

DOI:

https://doi.org/10.33448/rsd-v14i6.48970

Keywords:

Astronauts, Food science, Nutrition, Space nutrition.

Abstract

The first human spaceflight took place in April 1961, when Soviet astronaut Yuri Gagarin orbited the Earth. Since then, scientists have sought to improve technologies to explore space and have been developing means of making these trips longer and longer. In order for these expeditions to be safe, detailed studies on the diet, physiology, and nutrition of astronauts are necessary. This study aimed to verify the diet of astronauts in space and its implications, analyze the impacts of microgravity on the nutritional status of astronauts during space missions, analyze possible changes in the digestive system of astronauts, and identify space factors that influence the taste of astronauts. In addition, priority was given to articles published in the last 10 years to ensure that the data were up-to-date, except in cases of studies considered fundamental to the subject. The results analyzed indicate that in order to reduce the adverse effects of microgravity, such as depletion of muscle mass and bone mass, changes in the immune system, cardiovascular dysfunctions, and eye changes, adequate and specific nutrition is necessary for this population. Thus, high-protein diets enriched with calcium, vitamin D, antioxidants and omega-3 proved effective in maintaining the health of astronauts. Furthermore, when the diet did not meet the Recommended Daily Intake (RDI), nutritional supplementation was essential to preserve bone density, physical performance, immunity, intestinal microbiota and eye health.

Downloads

Download data is not yet available.

References

Ahmed, S. (1988). Comparação dos programas de alimentação e nutrição espacial soviético e americano. Johnson Space Center. 58, 1-16. Doi: 19890010688. https://ntrs.nasa.gov/api/citations/19890010688/downloads/19890010688.pdf Almeida, I. (2024). Cientistas tentam amenizar efeitos da gravidade zero na imunidade humana. https://www.correiobraziliense.com.br/ciencia-e-saude/2024/06/6875630-cientistas-tentam-amenizar-efeitos-da-gravidade-zero-na-imunidade-humana.html.

Baba, S., Smith, T., Hellman, J., Bhatnagar, A., Carter, K., Vanhoover, A. & Caruso, J. (2020). Space Flight Diet-Induced Deficiency and Response to Gravity-Free Resistive Exercise. Nutrients. 12 (8), 2400. Doi: 10.3390/nu12082400. https://research.ebsco.com/linkprocessor/plink?id=caa4a14c-1ab3-3706-b1e9-9b4aa9ebc9c8. Brett, M. (2013). Combustível de foguete. Smithsonian. 44 (3), 58-9. https://www.smithsonianmag.com/history/unpack-a-meal-of-astronaut-space-food-73348642/.

Cahill, T. & Hardman, G. (2020). Desafios nutricionais e contramedidas para viagens espaciais. Nutrition Bulletin. 45 (1), 98-105. Doi: 10.1111/nbu.12422. https://onlinelibrary.wiley.com/doi/abs/10.1111/nbu.12422. Camera, A., Tabetah, M., Castañeda, V., Kim, J. et al. (2024). Aging and putative frailty biomarkers are altered by spaceflight. Scientific Reports, [s. l.], v. 14, n. 1, p. 1–21. DOI 10.1038/s41598-024-57948-5. https://research.ebsco.com/linkprocessor/plink?id=7f50f941-01aa-3fbb-8ac5-f227ec584d04 .

Chaloulakou, S., Polia, K. & Karayiannis, D. (2022). Physiological Alterations in Relation to Space Flight: The Role of Nutrition. Nutrients. Athens. 14. Doi: https://doi.org/10.3390/nu14224896. https://www.mdpi.com/2072-6643/14/22/4896. Cranford, N. & Turner, J. (2021). The human body in space. NASA. https://www.nasa.gov/humans-in-space/the-human-body-in-space/.

Dickerson, B. L., Sowinski, R., Kreider, R. B. & Wu, G. (2023). Impacts of microgravity on amino acid metabolism during spaceflight. Experimental biology and medicine (Maywood, N.J.). 248 (5), 380–93. Doi: 10.1177/15353702221139189. https://research.ebsco.com/linkprocessor/plink?id=7f126be3-f530-3c0b-bb4b-13474f06636d. Crossetti, M. G. M. (2012). Revisión integradora de la investigación en enfermería el rigor científico que se le exige. Maria Da Graça Oliveira Crossetti. Rev. Gaúcha Enferm.33(2), 8-9.

Eckeberg, D. L., Diedrich, A., Cooke, W. H., et al. (2016). Respiratory modulation of human autonomic function: long-term neuroplasticity in space. The Journal of physiology. 594 (19), 5629–46. Doi: 10.1113/JP271656. https://research.ebsco.com/linkprocessor/plink?id=90afeb16-fa0f-3260-8fad-87b7aad9aadb.

Fhadil, S. & Wright, P. (2015). Eletrólitos em Cardiologia. The Pharmaceutical Journal, PJ. 294 (7849). Doi: 10.1211/PJ.2015.20067712. https://pharmaceutical-journal.com/article/ld/electrolytes-in-cardiology. Oluwafemi, F., Abdelbaki. R., C.-Y. La, J., Mora-Almanza, J., M. & Afolayan, E. (2021). A review of astronaut mental health in manned missions: Potential interventions for cognitive and mental health challenges. Sciense Direct. Doi: 10.1016/j.lssr.2020.12.002. https://www.sciencedirect.com/science/article/abs/pii/S2214552420300870.

Gabel, L., Liphardt, A-M., Hulme, P.A., Heer, M., Zwart, S.R., Sibonga, J. D., Smith, S. M. & Boyd, S. K. (2022). Incomplete recovery of bone strength and trabecular microarchitecture at the distal tibia 1 year after return from long duration spaceflight. Scientific Reports. 12(1), 1–13. Doi: 10.1038/s41598-022-13461-1. https://research.ebsco.com/linkprocessor/plink?id=6ab38e30-baa9-3342-93bc-ffb2f67a77d7.

Garcia-Medina, J. S., Sienkiewicz, K., Narayanan, S. A. et al. (2024). Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflight. Precision clinical medicine. 7(1), pbae007. Doi: 10.1093/pcmedi/pbae007. https://research.ebsco.com/linkprocessor/plink?id=3057b868-a4b3-3aff-b4e9-16beaa4b52e9.

Houerbi, N., Kim, J. K. Overbey, E. G., Batra, R., Schweickart, A. et al. (2024). Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflight. Nature communications. 15(1), 4862. Doi: 10.1038/s41467-024-48841-w. https://research.ebsco.com/linkprocessor/plink?id=89b37cf7-8a70-350b-99fb-533f68be6ab4.

Kim, J, Tierney, B. T., Overbey, E. G., Dantas, E.. et al. (2024). Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight. Nature communications. 15 (1), 4954. Doi: 10.1038/s41467-024-49211-2. https://research.ebsco.com/linkprocessor/plink?id=1042632f-5e00-3391-9c1d-074efe25cccd.

Lane, H., Smith, S., Rice, B. & Bourland, C. (1994). Nutrition in space: lessons from the past applied to the future. The American Journal of Clinical Nutrition. Elsevier. Doi: 10.1093/ajcn/60.5.801S. https://www.sciencedirect.com/science/article/abs/pii/S0002916523185273. NASA. (2023) Counteracting Bone and Muscle Loss in Microgravity Escritório de Integração de Pesquisa da Estação Espacial. https://www.nasa.gov/missions/station/iss-research/counteracting-bone-and-muscle-loss-in-microgravity/

Oluwafemi, F. A., De La Torre, A., Afolayan, E. M., Olalekan-Ajayi, B. M., Dhital, B., Mora-Almanza, J. G., Potrivitu, G., Creech, J. & Rivolta, A. (2018). Space Food and Nutrition in a Long Term Manned Mission. Adv. Astronaut. Sci. Technol. 1, 1–21. Doi: https://doi.org/10.1007/s42423-018-0016-2. https://link.springer.com/article/10.1007/s42423-018-0016-2#citeas.

Overbey, E. G., da Silveira, W. A., Stanbouly, S., Nishiyama, N. C., Roque-Torres, G. D., Pecaut, M. J., Zawieja, D. C., Wang, C., Willey, J. S., Delp, M. D., Hardiman, G. & Mao, X. W. (2019). Spaceflight influences gene expression, photoreceptor integrity, and Froxidative stress-related damage in the murine retina. Scientific Reports. 9 (1). Doi: 10.1038/s41598-019-49453-x. https://research.ebsco.com/linkprocessor/plink?id=a2da1e2a-94a9-3038-82e0-3e1ea2bf896d.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora da UAB/NTE/UFSM.

Rutter, L. A., Cope, H., MacKay, M. J., Herranz, R., Das, S., Ponomarev, S. A., Costes, S. V., Paul, A. M., Barker, R., Taylor, D. M., Bezdan, D., Szewczyk, N. J., Muratani, M., Mason, C. E. & Giacomello, S. (2024). Astronaut omics and the impact of space on the human body at scale. Nature communications. 15(1), 4952. Doi: 10.1038/s41467-024-47237-0. https://research.ebsco.com/linkprocessor/plink?id=cc70a0e1-aa4f-3341-85b5-d599727313e7.

Smith, S. M., Abrams, A. S., Davis-Street, J. E., Heer, M., O'Brien, K. O., Wastney, M. E. & Zwart, S. R. (2014). Space nutrition: impacts on human health. Annual Review of Nutrition. 34, 377-400. Doi: 10.1146/annurev-nutr-071813-105440. https://www.annualreviews.org/content/journals/10.1146/annurev-nutr-071813-105440.

Smith, S., Zwart, S., Douglas, G. & Heer, M. (2015). Human Adaptation to Spaceflight: The Role of Food and Nutrition. Second Edition. Local: NASA Johnson Space Center Houston, Texas USA. National Aeronautics and Space Administration.

Tang, H., Rising, H. H., Majji, M. & Brown, R. D. (2022). Long-Term Space Nutrition: A Scoping Review. Nutrients. 14(1), 194. Doi: 10.3390/nu14010194. https://research.ebsco.com/linkprocessor/plink?id=4c44b51e-fc04-3562-8d5e-a35062e5e1c1

Taylor, A. J., Beauchamp, J. D., Briand, L., Heer, M., Hummel, T., Margot, C., McGrane, S., Pieters, S., Pittia, P. & Spence, C. (2020). Factors affecting flavor perception in space: Does the spacecraft environment influence food intake by astronauts? Comprehensive reviews in food science and food safety. 19(6), 3439–75. Doi: 10.1111/1541-4337.12633. https://research.ebsco.com/linkprocessor/plink?id=8b981096-f883-352d-a162-e225786c4923.

Turroni, S., Magnani, M., Kc, P., Lesnik, P., Vidal, H. & Heer, M. (2020). Gut Microbiome and Space Travelers’ Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Frontiers in physiology. 11, 553929. Doi: 10.3389/fphys.2020.553929. https://research.ebsco.com/linkprocessor/plink?id=b24d8c0b-f50d-38db-914d-7f715450c1fc

Vernice, N. A., Meydan, C., Afshinnekoo, E. & Mason, C. E. (2020). Long-term spaceflight and the cardiovascular system. Precision Clinical Medicine. 3(4), 284–29, dec. 2020. Doi: https://doi.org/10.1093/pcmedi/pbaa022. https://academic.oup.com/pcm/article/3/4/284/5858004?login=false.

Zeitlin, C., Hassler, D. M., Cucinotta, F. A., Ehresmann, B., Wimmer-Schweingruber, R. F., Brinza, D. E., Kang, S., Weigle, G. et al. (2013) Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory Small. 340(6136), 1080-4. Doi: 10.1126/science.1235989. https://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=radiacao-viagem-marte-ameaca-saude-astronautas&id=010130130531. Acesso em: 27 out. 2024

Zwart, S. R., Mulavara, A. P., Williams T. J., George, K. & Smith, S. M. (2021). The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci Biobehav. 127, 307-31. Doi: 10.1016/j.neubiorev.2021.04.026. 2021 Apr 26. https://pubmed.ncbi.nlm.nih.gov/33915203/

Published

2025-06-08

Issue

Section

Review Article

How to Cite

Nutritional challenges in microgravity environments: A view of alimentation in space. Research, Society and Development, [S. l.], v. 14, n. 6, p. e2714648970, 2025. DOI: 10.33448/rsd-v14i6.48970. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/48970. Acesso em: 29 jun. 2025.