Predictive analysis of health-related absences among employees of the Regional Electoral Court of Rio Grande do Norte using LSTM neural networks

Authors

DOI:

https://doi.org/10.33448/rsd-v14i6.49003

Keywords:

Neural Networks (Computer), Human resource management, Occupational health, Time series.

Abstract

The Electoral Justice system is characterized by peaks in demand during election years and reduced demand in non-election years, requiring strategic human resource planning with internal staff reassignments during critical periods. In this context, this study aimed to predict health-related absences at the Regional Electoral Court of Rio Grande do Norte (TRE-RN), identifying patterns to support decisions on staff reinforcement during critical periods, based on the analysis of 15 years of medical leave data (from 2010 to 2024). The methodology involved analyzing absence data using a Long Short-Term Memory (LSTM) neural network implemented with the PyTorch library in Python. The results demonstrated the effectiveness of the LSTM model in forecasting, achieving a Mean Absolute Error (MAE) of 3.14 and a Root Mean Square Error (RMSE) of 4.05, outperforming the traditional SARIMAX model. This research contributes to human resource management at TRE-RN by supporting decisions on staff allocation during election periods and providing additional insights for monitoring occupational health conditions by the sector responsible for employee healthcare.

Downloads

Download data is not yet available.

References

Albeladi, K., Zafar, B., & Mueen, A. (2023). Time series forecasting using LSTM and ARIMA. International Journal of Advanced Computer Science and Applications, 14(1), 313–314. https://www.ijacsa.thesai.org

Auffarth, B. (2021). Machine learning for time-series with Python. Packt Publishing.

Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed.). Springer.

Cheung, Y.-W., & Lai, K. S. (1998). Power of the augmented Dickey-Fuller test with information-based lag selection. Journal of Statistical Computation and Simulation, 60(1), 57–65.

De Paula, D. M., Xavier Júnior, J. C., & Miranda, K. F. (2020). Aplicação de séries temporais para previsão de despesas de energia elétrica do Tribunal Regional Eleitoral do Rio Grande do Norte. Brazilian Journal of Development, 6(11), 87089–87112.

Dubey, A. K., Kumar, A., García-Díaz, V., Sharma, A. K., & Kanhaiya, K. (2021). Study and analysis of SARIMA and LSTM in forecasting time series data. Sustainable Energy Technologies and Assessments, 47, 101474.

Esculápio, M. (2013). A gestão de recursos humanos no serviço público [Monografia]. Universidade Tecnológica Federal do Paraná.

Faceli, K., Lorena, A. C., Gama, J., Almeida, T. A., & Carvalho, A. C. P. L. F. (2023). Inteligência artificial: Uma abordagem de aprendizado de máquina (2a ed.). LTC.

Fleck, L., Tavares, M. H. F., Eyng, E., Helmann, A. C., & Andrade, M. A. (2016). Redes neurais artificiais: Princípios básicos. Revista Eletrônica Científica Inovação e Tecnologia, 7(15), 47.

Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 3, 115-143.

Härter, F. P. (2007). Redes neurais recorrentes aplicadas à assimilação de dados em dinâmica não-linear [Tese de doutorado, Instituto Nacional de Pesquisas Espaciais].

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780 .

Livieris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN–LSTM model for gold price time-series forecasting. Neural Computing and Applications, 32(23), 17351–17360.

Mesquita, L. A. F. (2024). Redes neurais artificiais aplicadas a séries temporais para predição de enchentes [Master's thesis, Instituto de Ciências Matemáticas e de Computação – ICMC-USP].

Meta AI. (2023). PyTorch (Version 2.0.0) [Computer software].https://pytorch.org

Nascimento, E. G. S. et al. (2015). Um algoritmo baseado em técnicas de agrupamento para detecção de anomalias em séries temporais . In: Shitsuka, R. & Shitsuka, D. M. (2015). Estudos e Práticas de Aprendizagem de Matemática e Finanças com Apoio de Modelagem. Editora Ciência Moderna

Nelson, D. M. Q. (2017). Uso de redes neurais recorrentes para previsão de séries temporais financeiras [Master's thesis, Universidade Federal de Minas Gerais].

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [Recurso eletrônico]. Santa Maria, RS: UAB/NTE/UFSM.

Python Software Foundation. (2023). pmdarima: ARIMA modeling with auto-tuning (Version 2.0.3) [Python package].https://pypi.org/project/pmdarima/

Rostamian, A., & O'Hara, J. G. (2022). Event prediction within directional change framework using a CNN-LSTM model. Neural Computing and Applications, 34(20), 17193-17205 .

Sirisha, U. M., Belavagi, M. C., & Attigeri, G. (2022). Profit prediction using ARIMA, SARIMA and LSTM models in time series forecasting: A comparison. IEEE Access, 10, 124715-124727.

Spancerski, J. S., & Santos, J. A. A. D. (2021). Previsão da produtividade de arroz: Uma aplicação de redes neurais recorrentes LSTM. Revista Cereus, 13(2), 45-62.

The Pandas Development Team. (2020). pandas: Python data analysis library (Version 1.1.2) [Computer software]

Zha, W., Liu, Y., Wan, Y., Luo, R., Li, D., Yang, S., & Xu, Y. (2022). Forecasting monthly gas field production based on the CNN-LSTM model. Energy, 260, 124889.

Published

2025-06-13

Issue

Section

Exact and Earth Sciences

How to Cite

Predictive analysis of health-related absences among employees of the Regional Electoral Court of Rio Grande do Norte using LSTM neural networks. Research, Society and Development, [S. l.], v. 14, n. 6, p. e3914649003, 2025. DOI: 10.33448/rsd-v14i6.49003. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/49003. Acesso em: 28 jun. 2025.