Placas de aislamiento térmico y acústico de biomasa de microalgas, poli-β-hidroxibutirato y lana de vidrio

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i4.2995

Palabras clave:

Spirulina, conductividad térmica, coeficiente de absorción acústica, coeficiente de reducción acústica, construcciones sostenibles.

Resumen

Entre las muchas funciones que debe tener un material de construcción, destacan sus funciones de aislamiento. Este tipo de materiales actúa disminuyendo la conducción de calor/sonido hacia el medio ambiente. En este contexto, los bio-aislamientos han recibido una atención creciente debido a su desempeño y al uso de materiales de aislamiento sostenibles/naturales. Este estudio se realizó para evaluar el rendimiento térmico y acústico de placas de base biológica hechos de biomasa de Spirulina, poli-β-hidroxibutirato bacteriano (PHB) y lana de vidrio. Las placas se fabricaron con compresión calentada en diferentes proporciones: 33.33% de lana de vidrio, 33.33% de PHB y 33.33% de biomasa de Spirulina (Placa A); 20% lana de vidrio, 40% PHB y 40% Spirulina (Placa B); 40% lana de vidrio, 40% PHB y 20% Spirulina (Placa C); y 40% de lana de vidrio, 20% de PHB y 40% de Spirulina (Placa D). Las placas A y B mostraron una conductividad térmica más baja (0.09 W m-1 K-1) en comparación con los materiales aislantes tradicionales, como yeso puro (0.44 W m-1 K-1) y ladrillo aislante de caolín (0.08–0.19 W m-1 K-1). La placa D mostró el coeficiente de absorción acústica más alto de ~ 1600 Hz en comparación con otros aisladores de base biológica a la misma frecuencia, como fibra no tejida a base de polipropileno y fibra de hoja de té con el mismo grosor. Para el coeficiente de reducción de ruido, el tablero B mostró mejores resultados que el concreto. Por lo tanto, las placas A y B son adecuadas como aislantes térmicos, mientras que las placas B y D son adecuadas como aislantes acústicos. Para la aplicación simultánea como aislante térmico y acústico, la placa B es la mejor opción entre todas las placas.

Referencias

Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40, 353–366. https://dx.doi.org/10.1016/j.buildenv.2004.05.013

American Society for Testing and Materials D7984-16. (2016). Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument. ASTM International, West Conshohocken, PA, www.astm.org.

American Society for Testing and Materials - E1050. (2012). Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones, and a Digital Frequency Analysis System. ASTM International, West Conshohocken, PA, www.astm.org.

Arenas, J. P., & Crocker, M. J. (2010). Recent trends in porous sound-absorbing materials. Sound & vibration, 44, 12-18.

Ashour, T., Wieland, H., Georg, H., Bockisch, F., & Wu, W. (2010). The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings. Materials and Design, 31, 4676–4685. https://doi.org/10.1016/j.matdes.2010.05.026

Binici, H., Aksogan, O., & Demirhan, C. (2016). Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustainable Cities and Society, 20, 17-26. https://doi.org/10.1016/j.scs.2015.09.004

Chabriac, P. A., Gourdon, E., Gle, P., Fabbri, A., & Lenormand, H. (2016). Agricultural by-products for building insulation: Acoustical characterization and modeling to predict micro-strutural parameters. Construction and Building Materials, 112, 158-167. https://doi.org/10.1016/j.conbuildmat.2016.02.162

Chikhi, M., Agoudjil, B., Boudenne, A., & Gherabli, A. (2013). Experimental investigation of new biocomposite with low cost for thermal insulation. Energy and Buildings, 66, 267-273. https://doi.org/10.1016/j.enbuild.2013.07.019

Costa, J. A. V., & Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102, 2-9. https://doi.org/10.1016/j.biortech.2010.06.014

Ersoy, S., & Kuçuk, H. (2009). Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Applied Acoustics, 70, 215-220. https://doi.org/10.1016/j.apacoust.2007.12.005

Evon, P., Vandenbossche, V., Pontalier, P., & Rigal, L. (2014). New thermal insulation fiberboards from cake generated during biorefinary of sunflower whole plant in a twin-screw extruder. Industrial Crops and Products, 52, 354-362. https://doi.org/10.1016/j.indcrop.2013.10.049

Hirata, S., Ohta, M., & Honma, Y. (2001). Hardness distribution on wood surface. Journal of Wood Science, 1, 1-7. https://doi.org/10.1007/BF00776637

International Organization for Standardization 10534-2. (1998). Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part 2: Transfer-function method.

Khan, A., Mohamed, M., Halo, N., & Benkreira, H. (2017). Acoustical properties of novel sound absorbers made from recycled granulates. Applied Acoustics, 127, 80-88. https://doi.org/10.1016/j.apacoust.2017.05.035

Khedari, J., Pratinthong, N., & Hirunlabh, J. (2001). New lightweight composite construction materials with low thermal conductivity. Cement & Concrete Composites, 23, 65–70. https://doi.org/10.1016/S0958-9465(00)00072-X

Liu, L. F., Li, H. Q., Lazzaretto, A., Manente, G., Tong, C. Y., Liu, Q. B., & Li, N. P. (2017). The development history and prospects of biomass-based insulation materials for buildings. Renewable and Sustainable Energy Reviews, 69, 912-932. https://doi.org/10.1016/j.rser.2016.11.140

McCabe, W., Smith, J., Harriott, P. (2004). Unit Operations of Chemical Engineering. New York, McGraw Hill Education.

Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal fired thermoelectric power plant for the biofixation of carbon dioxide. Energy Conversion Management, 48 (7), 2169-2173. https://doi.org/10.1016/j.enconman.2006.12.011

Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43, 1732-1739. https://doi.org/10.1016/j.enbuild.2011.03.015

Papadopoulos, A. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37, 77-86. https://doi.org/10.1016/j.enbuild.2004.05.006

Sharma, L., Mallick, N. (2005). Accumulation of poly-b-hydroxybutyrate in Nostoc muscorum: regulation by pH, light– dark cycles, N and P status and carbon sources. Bioresources Technologies, 96, 1304-1310. https://doi.org/10.1016/j.biortech.2004.10.009

Tabor, D. (2000). The hardness of metals. New York, Oxford University Press Inc.

Väntsi, O., & Kärki, T. (2015). Environmental assessment of recycled mineral wool and polypropylene utilized in wood polymer composites. Resources, Conservation and Recycling, 104, 38-48. https://doi.org/10.1016/j.resconrec.2015.09.009

Volf, M., Divis, J., & Havlík, F. (2015). Thermal, moisture and biological behavior of natural insulating materials. Energy Procedia. 78, 1599-1604. https://doi.org/10.1016/j.egypro.2015.11.219

Yang, H. S., Kim, D. J., Lee, Y. K., Kim, H. J., Jeon, J. Y., & Kang, C. W. (2004). Possibility of using waste tire composites reinforced with rice straw as construction materials. Bioresource Technology, 95, 61-65. https://doi.org/10.1016/j.biortech.2004.02.002

Yang, H. S., Kim, D. J., Lee, & Kim, H. J. (2003). Rice straw-wood particle composite for sound absorbing wooden construction materials. Bioresource Technology, 86, 117-121. https://doi.org/10.1016/S0960-8524(02)00163-3

Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Waste Management, 31, 670–679. https://doi.org/10.1016/j.wasman.2010.10.030

Zarrouk, C. (1966). Contribuition a letude dune cyanophycee: Influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima geitler. PhD Thesis, University of Paris.

Descargas

Publicado

2020-03-21

Número

Sección

Ingenierías

Cómo citar

RIBEIRO, Eduardo Silveira; TAVELLA, Ronan Adler; SANTOS, Guilherme Senna dos; FIGUEIRA, Felipe da Silva; COSTA, Jorge Alberto Vieira. Placas de aislamiento térmico y acústico de biomasa de microalgas, poli-β-hidroxibutirato y lana de vidrio. Research, Society and Development, [S. l.], v. 9, n. 4, p. e143942995, 2020. DOI: 10.33448/rsd-v9i4.2995. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/2995. Acesso em: 16 jul. 2025.