Análisis prospectivo científico y tecnológico sobre el uso de la bioinformática para el diseño de vacunas peptídicas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i3.40287

Palabras clave:

Vacuna peptídica, Bioinformática, Vacuna de diseño.

Resumen

Las infecciones causadas por bacterias han tenido varios impactos negativos en la salud y la economía. Por su potencial de transmisibilidad, ha despertado un gran interés por parte de los científicos, ya que la mayoría de estos microorganismos son resistentes a los antibióticos y no cuentan con tratamientos y profilaxis eficaces. Por ello, la ciencia ha ido incorporando tecnologías de la información para analizar datos importantes con el fin de obtener información y así poder llevar a cabo el diseño de la vacuna contra estos patógenos. El objetivo de este estudio fue buscar en la literatura y en las invenciones, expedientes que estuvieran relacionados con vacunas peptídicas desarrolladas a partir del uso de la bioinformática.  Vacuna peptídica, bioinformática y vacuna de diseño fueron las palabras clave utilizadas para la búsqueda de artículos y patentes en las siguientes bases de datos: PubMed, INPI y WIPO. El relevamiento de datos permitió encontrar una muestra de 259 artículos científicos y 31 patentes existentes en los últimos 11 años en la base de datos de la OMPI, además de 31 patentes en el INPI. La elaboración de prospectos científico-tecnológicos es de suma importancia ya que proporciona una mayor adquisición de conocimientos sobre el tema abordado y permite al científico orientar mejor el estudio.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abdelmageed, M. I., Abdelmoneim, A. H., Mustafa, M. I., Elfadol, N. M., Murshed, N. S., Shantier, S. W., & Makhawi, A. M. (2020a). Design of a Multiepitope-Based Peptide Vaccine against the e Protein of Human COVID-19: An Immunoinformatics Approach. BioMed Research International, 2020. https://doi.org/10.1155/2020/2683286

Abdelmageed, M. I., Abdelmoneim, A. H., Mustafa, M. I., Elfadol, N. M., Murshed, N. S., Shantier, S. W., & Makhawi, A. M. (2020b). Design of a Multiepitope-Based Peptide Vaccine against the e Protein of Human COVID-19: An Immunoinformatics Approach. BioMed Research International, 2020. https://doi.org/10.1155/2020/2683286

Bulley, A., & Irish, M. (2018). The functions of prospection - Variations in health and disease. Frontiers in Psychology, 9(NOV), 2328. https://doi.org/10.3389/FPSYG.2018.02328/BIBTEX

de Almeida Borges, P., de Araújo, L. P., Lima, L. A., Ghesti, G. F., & Souza Carmo, T. (2020). The triple helix model and intellectual property: The case of the University of Brasilia. World Patent Information, 60, 101945. https://doi.org/10.1016/J.WPI.2019.101945

Dey, S., De, A., & Nandy, A. (2016). Rational design of peptide vaccines against multiple types of human papillomavirus. Cancer Informatics, 15, 1–16. https://doi.org/10.4137/CIN.S39071/ASSET/IMAGES/LARGE/10.4137_CIN.S39071-FIG2.JPEG

Cross, D., Thomson, S., & Sinclair, Alexandra. (2017). Research in Brazil A report for CAPES by Clarivate Analytics.

Droppa-Almeida, D., Franceschi, E., & Padilha, F. F. (2018). Immune-informatic analysis and design of peptide vaccine from multi-epitopes against Corynebacterium pseudotuberculosis. Bioinformatics and Biology Insights, 12. https://doi.org/10.1177/1177932218755337/ASSET/IMAGES/LARGE/10.1177_1177932218755337-FIG2.JPEG

Ejigu, G. F., & Jung, J. (2020). Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing. Biology, 9(9), 1–27. https://doi.org/10.3390/BIOLOGY9090295

Fasi, M. A. (2022). An Overview on patenting trends and technology commercialization practices in the university Technology Transfer Offices in USA and China. World Patent Information, 68, 102097. https://doi.org/10.1016/J.WPI.2022.102097

Fonseca, E. M. da, Shadlen, K. C., & Bastos, F. I. (2021). The politics of COVID-19 vaccination in middle-income countries: Lessons from Brazil. Social Science & Medicine, 281, 114093. https://doi.org/10.1016/J.SOCSCIMED.2021.114093

Kalita, P., Padhi, A. K., Zhang, K. Y. J., & Tripathi, T. (2020). Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microbial Pathogenesis, 145, 104236. https://doi.org/10.1016/J.MICPATH.2020.104236

Lima, C. C., Benjamim, S. C. C., & Santos, R. F. S. dos. (2017). Mecanismo de resistência bacteriana frente aos fármacos: uma revisão. CuidArte, Enferm, 105–113. http://www.webfipa.net/facfipa/ner/sumarios/cuidarte/2017v1/15%20Artigo_Mecanismo%20resist%C3%AAncia%20bacteriana%20a%20antibi%C3%B3ticos_27-07-17.pdf

Lohia, N., & Baranwal, M. (2020). An immunoinformatics approach in design of synthetic peptide vaccine against influenza virus. Methods in Molecular Biology, 2131, 229–243. https://doi.org/10.1007/978-1-0716-0389-5_11/COVER

Maxwell, I. A., & Maxwell, N. J. L. (2022). A review of Chinese-owned Australian patents. World Patent Information, 71, 102151. https://doi.org/10.1016/J.WPI.2022.102151

Montecchi, T., Russo, D., & Liu, Y. (2013a). Searching in Cooperative Patent Classification: Comparison between keyword and concept-based search. Advanced Engineering Informatics, 27(3), 335–345. https://doi.org/10.1016/J.AEI.2013.02.002

Montecchi, T., Russo, D., & Liu, Y. (2013b). Searching in Cooperative Patent Classification: Comparison between keyword and concept-based search. Advanced Engineering Informatics, 27(3), 335–345. https://doi.org/10.1016/J.AEI.2013.02.002

Mustafa, M. I., Shantier, S. W., Abdelmageed, M. I., & Makhawi, A. M. (2021). Epitope-based peptide vaccine against Bombali Ebolavirus viral protein 40: An immunoinformatics combined with molecular docking studies. Informatics in Medicine Unlocked, 25, 100694. https://doi.org/10.1016/J.IMU.2021.100694

Pereira, R., Oliveira, J., & Sousa, M. (2020). Bioinformatics and Computational Tools for Next-Generation Sequencing Analysis in Clinical Genetics. Journal of Clinical Medicine 2020, Vol. 9, Page 132, 9(1), 132. https://doi.org/10.3390/JCM9010132

Ray, M., Sable, M. N., Sarkar, S., & Hallur, V. (2021). Essential interpretations of bioinformatics in COVID-19 pandemic. Meta Gene, 27, 100844. https://doi.org/10.1016/J.MGENE.2020.100844

Rother, E. T. (2007). Revisão Sistemática x Revisão Narrativa. Acta Paul Enferm ; Vol. 20. https://doi.org/10.1590/S0103-21002007000200001

Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/J.MOLIMM.2019.04.030

Sánchez-Burgos, G. G., Montalvo-Marin, N. M., Díaz-Rosado, E. R., & Pérez-Rueda, E. (2021). In silico identification of chikungunya virus b-and t-cell epitopes with high antigenic potential for vaccine development. Viruses, 13(12), 2360. https://doi.org/10.3390/V13122360/S1

Sardar, R., Satish, D., Birla, S., & Gupta, D. (2020). Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host-virus interaction, pathogenesis and clues for novel therapies. Heliyon, 6(9), e04658. https://doi.org/10.1016/J.HELIYON.2020.E04658

Shahid, F., Ashfaq, U. A., Javaid, A., & Khalid, H. (2020). Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome. Infection, Genetics and Evolution, 80, 104199. https://doi.org/10.1016/J.MEEGID.2020.104199

Sharma, A., Virmani, T., Pathak, V., Sharma, A., Pathak, K., Kumar, G., & Pathak, D. (2022). Artificial Intelligence-Based Data-Driven Strategy to Accelerate Research, Development, and Clinical Trials of COVID Vaccine. BioMed Research International, 2022. https://doi.org/10.1155/2022/7205241

Soudry, D., Hoffer, E., Nacson, M. S., & Srebro, N. (2018). The Implicit Bias of Gradient Descent on Separable Data. Journal of Machine Learning Research, 19, 1–57. http://jmlr.org/papers/v19/18-188.html.

Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. Engineering, 5(4), 653–661. https://doi.org/10.1016/J.ENG.2019.01.014

Torrisi, M., Pollastri, G., & Le, Q. (2020). Deep learning methods in protein structure prediction. Computational and Structural Biotechnology Journal, 18, 1301–1310. https://doi.org/10.1016/J.CSBJ.2019.12.011

Wenham, C., Smith, J., & Morgan, R. (2020). COVID-19: the gendered impacts of the outbreak. The Lancet, 395(10227), 846–848. https://doi.org/10.1016/S0140-6736(20)30526-2

Wu, Q., Zaid, M., Xuan, Z., Wang, C., Gu, H., Shi, M., Zhu, J., Hu, Y., & Liu, J. (2021). Changes in epidemiological features of vaccine preventable infectious diseases among three eras of national vaccination strategies from 1953 to 2018 in Shanghai, China. The Lancet Regional Health - Western Pacific, 7, 100092. https://doi.org/10.1016/J.LANWPC.2021.100092

Wu, R., Wang, H., Lv, X., Shen, X., & Ye, G. (2020). Rapid action of mechanism investigation of Yixin Ningshen tablet in treating depression by combinatorial use of systems biology and bioinformatics tools. Journal of Ethnopharmacology, 257, 112827. https://doi.org/10.1016/J.JEP.2020.112827

Yazdani, Z., Rafiei, A., Yazdani, M., & Valadan, R. (2020). Design an Efficient Multi-Epitope Peptide Vaccine Candidate Against SARS-CoV-2: An in silico Analysis. Infection and Drug Resistance, 13, 3007. https://doi.org/10.2147/IDR.S264573

Zaini, W. M. F., Lai, D. T. C., & Lim, R. C. (2022). Identifying patent classification codes associated with specific search keywords using machine learning. World Patent Information, 71, 102153. https://doi.org/10.1016/J.WPI.2022.102153

Zerihun, M. B., Pucci, F., Peter, E. K., & Schug, A. (2020). pydca v1.0: a comprehensive software for direct coupling analysis of RNA and protein sequences. Bioinformatics, 36(7), 2264–2265. https://doi.org/10.1093/BIOINFORMATICS/BTZ892

Zhang, D., Yang, Y., Li, M., Lu, Y., Liu, Y., Jiang, J., Liu, R., Liu, J., Huang, X., Li, G., & Qu, J. (2022). Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases. Engineering, 10, 155–166. https://doi.org/10.1016/J.ENG.2020.11.002

Zhang, X. M., Liang, L., Liu, L., & Tang, M. J. (2021). Graph Neural Networks and Their Current Applications in Bioinformatics. Frontiers in Genetics, 12. https://doi.org/10.3389/FGENE.2021.690049

Publicado

2023-03-02

Número

Sección

Ciencias de la salud

Cómo citar

Análisis prospectivo científico y tecnológico sobre el uso de la bioinformática para el diseño de vacunas peptídicas. Research, Society and Development, [S. l.], v. 12, n. 3, p. e13912340287, 2023. DOI: 10.33448/rsd-v12i3.40287. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/40287. Acesso em: 28 jun. 2025.