Uso de aplicativos para contagem de carboidratos como ferramenta de auxílio no autogerenciamento do diabetes mellitus tipo 1: uma revisão sistemática

Autores

DOI:

https://doi.org/10.33448/rsd-v12i1.39270

Palavras-chave:

Diabetes mellitus tipo 1, Carboidratos da dieta, Tecnologia sem fio.

Resumo

Aplicativos para a contagem de carboidratos (CCHO) contribuem com inúmeras possibilidades no apoio ao tratamento de pessoas com diabetes, auxiliando na terapia nutricional. Contudo, existe uma quantidade escassa de estudos que avaliam o uso dessa tecnologia, tornando de grande valia identificar seus possíveis benefícios. O presente estudo teve como objetivo verificar o uso de aplicativos para CCHO no autogerenciamento do tratamento do diabetes mellitus tipo 1 (DM1). Trata-se de uma revisão sistemática, realizada mediante pesquisa nas plataformas MedLine, LILACS, Portal de Periódicos CAPES e EBSCOhost, com artigos publicados no período de 2011 a 2021, pesquisados entre abril e junho de 2021, com descritores “Diabetes Mellitus, Type 1” and “Carbohydrate count” and “Mobile Apps”. Foram incluídos estudos originais do tipo ensaio clínico randomizado e excluídos artigos não-originais, estudos realizados com gestantes e pacientes com diabetes mellitus tipo 2. Inicialmente, foram encontrados 67 artigos publicados na íntegra, dos quais, após a remoção de duplicados, restaram 60. Após a aplicação dos critérios de elegibilidade, restaram dois estudos, com a população entre 12 e 46 participantes e tempo de intervenção em torno de 90 e 104 dias. Os aplicativos utilizados foram iSpy e VoiceDiab. Dentre os principais desfechos, destacam-se a melhora da precisão da CCHO, redução da hemoglobina glicada e maior tempo no alvo. Portanto, é possível concluir que o uso de aplicativos para a CCHO está associado a diversos benefícios, devido a sua estimativa mais precisa das quantidades de CHO, corroborando com melhor controle glicêmico.

Biografia do Autor

  • Natália Souza Dantas, Universidade Federal do Ceará

    Nutricionista (Universidade de Fortaleza). Universidade Federal do Ceará, Programa de Pós-Graduação em Residência Integrada Multiprofissional em Atenção Hospitalar à Saúde. Fortaleza – Ceará, Brasil. ORCID: https://orcid.org/0000-0002-5074-7618.

  • Natasha Vasconcelos Albuquerque, Universidade Federal do Ceará

    Mestre em Saúde Pública (Universidade Federal do Ceará). Universidade Federal do Ceará, Doutorado em Saúde Pública. Fortaleza – Ceará, Brasil.

  • Tatiana Rebouças Moreira, Universidade Federal do Ceará

    Mestre em Cuidados Clínicos em Enfermagem e Saúde (Universidade Estadual do Ceará). Universidade Estadual do Ceará, Doutorado em Cuidados Clínicos em Enfermagem e Saúde. Fortaleza – Ceará, Brasil.

  • Alane Nogueira Bezerra, Universidade Federal do Ceará

    Mestre em Nutrição e Saúde (Universidade Estadual do Ceará). Universidade Federal do Ceará, Doutorado em Ciências Médicas. Fortaleza – Ceará, Brasil.

  • Lorena Taúsz Tavares Ramos, Universidade Federal do Ceará

    Graduada em Nutrição (Universidade Estadual do Ceará). Universidade Federal do Ceará, Mestrado em Saúde Pública. Fortaleza – Ceará, Brasil.

  • Kamila Silva Camelo Rebouças, Universidade Federal do Ceará

    Universidade Federal do Ceará, Programa de Pós-Graduação em Residência Integrada Multiprofissional em Atenção Hospitalar à Saúde. Fortaleza – Ceará, Brasil.

  • Renata Cristina Machado Mendes, Universidade Federal do Ceará

    Mestre em Nutrição e Saúde (Universidade Estadual do Ceará). Universidade Federal do Ceará, Programa de Pós-Graduação em Residência Integrada Multiprofissional em Atenção Hospitalar à Saúde. Fortaleza – Ceará, Brasil.

Referências

Ahola, A. J., Mäkimattila, S., Saraheimo, M., Mikkilä, V., Forsblom, C., Freese, R., Groop, P. H., & FinnDIANE Study Group (2010). Many patients with Type 1 diabetes estimate their prandial insulin need inappropriately. Journal of Diabetes, 2(3), 194–202. https://doi.org/10.1111/j.1753-0407.2010.00086.x

Alfonsi, J. E., Choi, E. E. Y., Arshad, T., Sammott, S. S., Pais, V., Nguyen, C., Maguire, B. R., Stinson, J. N., & Palmert, M. R. (2020). Carbohydrate Counting App Using Image Recognition for Youth With Type 1 Diabetes: Pilot Randomized Control Trial. JMIR mHealth and uHealth, 8(10), e22074. https://doi.org/10.2196/22074

American Diabetes Association (2020). Standards of Medical Care in Diabetes-2020 Abridged for Primary Care Providers. Clinical diabetes: a publication of the American Diabetes Association, 38(1), 10–38. https://doi.org/10.2337/cd20-as01

Bayram, S., Kızıltan, G., & Akın, O. (2020). Effect of adherence to carbohydrate counting on metabolic control in children and adolescents with type 1 diabetes mellitus. Annals of pediatric endocrinology & metabolism, 25(3), 156–162. https://doi.org/10.6065/apem.1938192.096

Brasil. Ministério da Saúde. Secretaria de Ciência. (2012). Tecnologia e Insumos Estratégicos. Diretrizes metodológicas: elaboração de revisão sistemática e metanálise de ensaios clínicos randomizados. http://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_metodologicas_elaboracao_sistematica.pdf

Chotwanvirat, P., Hnoohom, N., Rojroongwasinkul, N., & Kriengsinyos, W. (2021). Feasibility Study of an Automated Carbohydrate Estimation System Using Thai Food Images in Comparison With Estimation by Dietitians. Frontiers in nutrition, 8, 732449. https://doi.org/10.3389/fnut.2021.732449

Fu, S., Li, L., Deng, S., Zan, L., & Liu, Z. (2016). Effectiveness of advanced carbohydrate counting in type 1 diabetes mellitus: a systematic review and meta-analysis. Scientific reports, 6(1), 37067. https://doi.org/10.1038/srep37067

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (Eds). (2022). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane. www.training.cochrane.org/handbook

International Diabetes Federation (2019). IDF diabetes atlas, 9th ed, Brussels International Diabetes Federation. http://www.idf.org/diabetesatlas

Joubert, M., Meyer, L., Doriot, A., Dreves, B., Jeandidier, N., & Reznik, Y. (2021). Prospective Independent Evaluation of the Carbohydrate Counting Accuracy of Two Smartphone Applications. Diabetes Therapy, 12(7), 1809–1820. https://doi.org/10.1007/s13300-021-01082-2

Kawamura, T., Takamura, C., Hirose, M., Hashimoto, T., Higashide, T., Kashihara, Y., Hashimura, K., & Shintaku, H. (2015). The factors affecting on estimation of carbohydrate content of meals in carbohydrate counting. Clinical Pediatric Endocrinology, 24(4), 153–165. https://doi.org/10.1297/cpe.24.153

Ladyzynski, P., Krzymien, J., Foltynski, P., Rachuta, M., & Bonalska, B. (2018). Accuracy of Automatic Carbohydrate, Protein, Fat and Calorie Counting Based on Voice Descriptions of Meals in People with Type 1 Diabetes. Nutrients, 10(4), 518. https://doi.org/10.3390/nu10040518

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2015). Principais itens para relatar Revisões Sistemáticas e Meta-análises: A recomendação PRISMA. Rev Epidemiol Serv Saúde, 24 (2), 335-342. 10.5123/S1679-49742015000200017

Ndahura, N. B., Munga, J., Kimiywe, J., & Mupere, E. (2021). Caregivers’ Nutrition Knowledge and Dietary Intake of Type 1 Diabetic Children Aged 3–14 Years in Uganda. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 127–137. https://doi.org/10.2147/dmso.s285979

Pańkowska, E., Ładyżyński, P., Foltyński, P., & Mazurczak, K. (2017). A Randomized Controlled Study of an Insulin Dosing Application That Uses Recognition and Meal Bolus Estimations. Journal of Diabetes Science and Technology, 11(1), 43–49. https://doi.org/10.1177/1932296816683409

Rhyner, D., Loher, H., Dehais, J., Anthimopoulos, M., Shevchik, S., Botwey, R. H., Duke, D., Stettler, C., Diem, P., & Mougiakakou, S. (2016). Carbohydrate Estimation by a Mobile Phone-Based System Versus Self-Estimations of Individuals With Type 1 Diabetes Mellitus: A Comparative Study. Journal of Medical Internet Research, 18(5), e101. https://doi.org/10.2196/jmir.5567

Rinker, J., Dickinson, J. K., Litchman, M. L., Williams, A. S., Kolb, L. E., Cox, C., & Lipman, R. D. (2018). The 2017 Diabetes Educator and the Diabetes Self-Management Education National Practice Survey. The Diabetes Educator, 44(3), 260–268. https://doi.org/10.1177/0145721718765446

Santos, C. M. da C., Pimenta, C. A. de M., & Nobre, M. R. C. (2007). A estratégia PICO para a construção da pergunta de pesquisa e busca de evidências. Revista Latino-Americana de Enfermagem, 15 (3), 508-511. https://doi.org/10.1590/S0104-11692007000300023

Sociedade Brasileira de Diabetes (2019). Tratamento de diabetes mellitus tipo 1: manejo da hiperglicemia. In: SBD. Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes – 2019-2020. São Paulo: Editora Clannad.

Sociedade Brasileira de Diabetes (2016). Manual de contagem de carboidratos para as pessoas com diabetes. Rio de Janeiro: Sociedade Brasileira de Diabetes.

Tascini, G., Berioli, M., Cerquiglini, L., Santi, E., Mancini, G., Rogari, F., Toni, G., & Esposito, S. (2018). Carbohydrate Counting in Children and Adolescents with Type 1 Diabetes. Nutrients, 10(1), 109. https://doi.org/10.3390/nu10010109

Rassi, N., Salles, J. E. N., & Silva, S. C. (2021). Insulinoterapia no Diabetes Melito Tipo 1. In: Vilar, L., Naves, L. A., Freitas, M. C., & Fleseriu, M. Endocrinologia Clínica. Rio de Janeiro: Guanabara Koogan.

World Health Organization (2016). Global report on diabetes. Who.int. https://doi.org/9789241565257

Downloads

Publicado

2023-01-01

Edição

Seção

Ciências da Saúde

Como Citar

DANTAS, Natália Souza; ALBUQUERQUE, Natasha Vasconcelos; REBOUÇAS MOREIRA, Tatiana; BEZERRA, Alane Nogueira; RAMOS, Lorena Taúsz Tavares; REBOUÇAS, Kamila Silva Camelo; MENDES, Renata Cristina Machado. Uso de aplicativos para contagem de carboidratos como ferramenta de auxílio no autogerenciamento do diabetes mellitus tipo 1: uma revisão sistemática. Research, Society and Development, [S. l.], v. 12, n. 1, p. e3912139270, 2023. DOI: 10.33448/rsd-v12i1.39270. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/39270. Acesso em: 17 jul. 2025.