Análise da neurotoxicidade causada por organofosforados e sua relação com alterações neurológicas e distúrbios psiquiátricos
DOI:
https://doi.org/10.33448/rsd-v14i1.48130Palavras-chave:
Compostos organofosforados, Síndromes neurotóxicas, Herbicidas, Transtorno do Espectro Autista.Resumo
Os organofosforados são anticolinesterásicos suspeitos de interferir no desenvolvimento, no crescimento e no funcionamento de diferentes sistemas orgânicos. Com isso, o objetivo deste estudo foi desenvolver um levantamento de dados inerentes aos efeitos neurotóxicos dos organofosforados e possíveis quadros clínicos associados. Foi desenvolvida uma revisão narrativa da literatura, a partir de artigos indexados nas principais bases de dados: Elsevier, Cochrane, PubMed e SciELO. Os estudos foram selecionados utilizando os termos de busca que constam nos Descritores em Ciências da Saúde (Decs). Os dados obtidos apontam para os efeitos neurotóxicos pelo uso de organofosforados desde comprometimento no desenvolvimento do Sistema Nervoso até eventos neurotóxicos, que abrangem desde a crise colinérgica aguda e a síndrome intermediária até a polineuropatia retardada induzida por organofosforado, quadros clínicos em decorrência de degeneração axonal em diferentes regiões do Sistema Nervoso Central e Periférico, doenças neurodegenerativas e progressivas, além de distúrbios cognitivos e de comportamento, como transtorno do espectro autista. Assim, conclui-se que exposição a compostos organofosforados pode desencadear manifestações clínicas brandas, moderadas ou graves que revelam diferentes síndrome neurotóxicas, bem como transtornos psiquiátricos, como a depressão, comportamentos repetitivos, dificuldade de interação social e decréscimo do quoeficiente de inteligência.
Referências
Agrotóxico. (2018). INCA - National Cancer Institute. https://www.inca.gov.br/en/node/1909
Aldridge, J. E., Seidler, F. J., & Slotkin, T. A. (2004). Developmental exposure to chlorpyrifos elicits sex-selective alterations of serotonergic synaptic function in adulthood: critical periods and regional selectivity for effects on the serotonin transporter, receptor subtypes, and cell signaling. Environmental Health Perspectives, 112(2), 148–155. https://doi.org/10.1289/ehp.6713
Aleyasin H. (2004) Nuclear Factor- B Modulates the p53 Response in Neurons Exposed to DNA Damage. Journal of Neuroscience, 24(12), 2963–73.
Aliomrani, M., Mesripour, A., & Sayahpour, Z. (2021). AChR is partly responsible in mice depressive-like behavior after Phosalone exposure. Neurotoxicology and Teratology, 84, 106957. https://doi.org/10.1016/j.ntt.2021.106957
Bouchard, M. F., Chevrier, J., Harley, K. G., Kogut, K., Vedar, M., Calderon, N., Trujillo, C., Johnson, C., Bradman, A., Barr, D. B., & Eskenazi, B. (2011). Prenatal Exposure to Organophosphate Pesticides and IQ in 7-Year-Old Children. Environmental Health Perspectives, 119(8), 1189–1195. https://doi.org/10.1289/ehp.1003185
Braquenier, J.-B., Quertemont, E., Tirelli, E., & Plumier, J.-C. (2010). Anxiety in adult female mice following perinatal exposure to chlorpyrifos. Neurotoxicology and Teratology, 32(2), 234–239. https://doi.org/10.1016/j.ntt.2009.08.008
Burke, R. D., Todd, S. W., Lumsden, E., Mullins, R. J., Mamczarz, J., Fawcett, W. P., Gullapalli, R. P., Randall, W. R., Pereira, E. F. R., & Albuquerque, E. X. (2017). Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. Journal of Neurochemistry, 142, 162–177. https://doi.org/10.1111/jnc.14077
Casarin, S. T. et al. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10 (5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924.
Constantino, J. N. (2011). The Quantitative Nature of Autistic Social Impairment. Pediatric Research, 69(5 Part 2), 55R62R. https://doi.org/10.1203/pdr.0b013e318212ec6e
De Felice, A., Greco, A., Calamandrei, G., & Minghetti, L. (2016). Prenatal exposure to the organophosphate insecticide chlorpyrifos enhances brain oxidative stress and prostaglandin E2 synthesis in a mouse model of idiopathic autism. Journal of Neuroinflammation, 13(1). https://doi.org/10.1186/s12974-016-0617-4
De Felice, A., Scattoni, M. L., Ricceri, L., & Calamandrei, G. (2015). Prenatal Exposure to a Common Organophosphate Insecticide Delays Motor Development in a Mouse Model of Idiopathic Autism. PLOS ONE, 10(3), e0121663. https://doi.org/10.1371/journal.pone.0121663
Engel, S. M., Wetmur, J., Chen, J., Zhu, C., Barr, D. B., Canfield, R. L., & Wolff, M. S. (2011). Prenatal Exposure to Organophosphates, Paraoxonase 1, and Cognitive Development in Childhood. Environmental Health Perspectives, 119(8), 1182–1188. https://doi.org/10.1289/ehp.1003183
Eubig, P. A., Aguiar, A., & Schantz, S. L. (2010). Lead and PCBs as Risk Factors for Attention Deficit/Hyperactivity Disorder. Environmental Health Perspectives, 118(12), 1654–1667. https://doi.org/10.1289/ehp.0901852
Hallmayer, J. (2011). Genetic Heritability and Shared Environmental Factors Among Twin Pairs With Autism. Archives of General Psychiatry, 68(11), 1095. https://doi.org/10.1001/archgenpsychiatry.2011.76
Hsieh B. H., Deng J. F., Ger J., & Tsai W. J. (2001). Acetylcholinesterase Inhibition and the Extrapyramidal Syndrome: A Review of the Neurotoxicity of Organophosphate. Neurotoxicology, 22(4), 423–7. https://doi.org/10.1016/S0161-813X(01)00044-4
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671. https://doi.org/10.3758/bf03196323
Karalliedde L., Baker D., & Marrs T. C. (2006). Organophosphate-Induced Intermediate Syndrome. Toxicological Reviews, 25(1), 1–14. https://doi.org/10.2165/00139709-200625010-00001
Kaya, Y., Bas, O., Hanci, H., Cankaya, S., Nalbant, I., Odaci, E., Avni Uydu, H., & Aslan, A. (2018). Acute renal involvement in organophosphate poisoning: histological and immunochemical investigations. Renal Failure, 40(1), 410–415. https://doi.org/10.1080/0886022x.2018.1489289
Langiano V. C (2006). Toxicidade do Roundup ® e seus efeitos para o peixe neotropical Prochilodus lineatus. http://www.uel.br/laboratorios/lefa/dissertacaovivian.pdf
Lee, J. E., Lim, M. S., Park, J. H., Park, C. H., & Koh, H. C. (2014). Nuclear NF-κB contributes to chlorpyrifos-induced apoptosis through p53 signaling in human neural precursor cells. NeuroToxicology, 42, 58–70. https://doi.org/10.1016/j.neuro.2014.04.001
Levin, E. D., Addy, N., Nakajima, A., Christopher, N. Channelle., Seidler, F. J., & Slotkin, T. A. (2001). Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Developmental Brain Research, 130(1), 83–89. https://doi.org/10.1016/s0165-3806(01)00215-2
Lorke, D. E., & Petroianu, G. A. (2019). Treatment of Organophosphate Poisoning with Experimental Oximes: A Review. Current Organic Chemistry, 23(5), 628–639. https://doi.org/10.2174/1385272823666190408114001
Lotti M., & Moretto A. (2005). Organophosphate-Induced Delayed Polyneuropathy. Toxicological Reviews, 24(1), 37–49. https://doi.org/10.2165/00139709-200524010-00003
Lovasi, G. S., Quinn, J. W., Rauh, V. A., Perera, F. P., Andrews, H. F., Garfinkel, R., Hoepner, L., Whyatt, R., & Rundle, A. (2011). Chlorpyrifos Exposure and Urban Residential Environment Characteristics as Determinants of Early Childhood Neurodevelopment. American Journal of Public Health, 101(1), 63–70. https://doi.org/10.2105/ajph.2009.168419
Marks, A. R., Harley, K., Bradman, A., Kogut, K., Barr, D. B., Johnson, C., Calderon, N., & Eskenazi, B. (2010). Organophosphate Pesticide Exposure and Attention in Young Mexican-American Children: The CHAMACOS Study. Environmental Health Perspectives, 118(12), 1768–1774. https://doi.org/10.1289/ehp.1002056
Mullen, B. R., Khialeeva, E., Hoffman, D. B., Ghiani, C. A., & Carpenter, E. M. (2012). Decreased Reelin Expression and Organophosphate Pesticide Exposure Alters Mouse Behaviour and Brain Morphology. ASN Neuro, 5(1), AN20120060. https://doi.org/10.1042/an20120060
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.
Philippat, C., Barkoski, J., Tancredi, D. J., Elms, B., Barr, D. B., Ozonoff, S., Bennett, D. H., & Hertz-Picciotto, I. (2018). Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. International Journal of Hygiene and Environmental Health, 221(3), 548–555. https://doi.org/10.1016/j.ijheh.2018.02.004
Pope, C., Karanth, S., & Liu, J. (2005). Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environmental Toxicology and Pharmacology, 19(3), 433–446. https://doi.org/10.1016/j.etap.2004.12.048
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1(4), 515–526. https://doi.org/10.1017/S0140525X00076512
Rauh, V. A., Garfinkel, R., Perera, F. P., Andrews, H. F., Hoepner, L., Barr, D. B., Whitehead, R., Tang, D., & Whyatt, R. W. (2006). Impact of Prenatal Chlorpyrifos Exposure on Neurodevelopment in the First 3 Years of Life Among Inner-City Children. PEDIATRICS, 118(6), e1845–e1859. https://doi.org/10.1542/peds.2006-0338
Rauh, V. A., Perera, F. P., Horton, M. K., Whyatt, R. M., Bansal, R., Hao, X., Liu, J., Barr, D. B., Slotkin, T. A., & Peterson, B. S. (2012). Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proceedings of the National Academy of Sciences, 109(20), 7871–7876. https://doi.org/10.1073/pnas.1203396109
Richardson R. J., Fink J. K., Glynn P., Hufnagel R. B., Makhaeva G. F., & Wijeyesakere S. J. (2020). Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). Advances in Neurotoxicology, 4, 1–78. https://doi.org/10.1016/bs.ant.2020.01.001
Richardson R. J., Hein N. D., Wijeyesakere S. J., Fink J. K., & Makhaeva G. F. (2013). Neuropathy target esterase (NTE): overview and future. Chemico-Biological Interactions, 203(1): 238–44.
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20(2). https://doi.org/10.1590/S0103-21002007000200001.
Sagiv, S. K., Bruno, J. L., Baker, J. M., Palzes, V., Kogut, K., Rauch, S., Gunier, R., Mora, A. M., Reiss, A. L., & Eskenazi, B. (2019). Prenatal exposure to organophosphate pesticides and functional neuroimaging in adolescents living in proximity to pesticide application. Proceedings of the National Academy of Sciences, 116(37), 18347–18356. https://doi.org/10.1073/pnas.1903940116
Sagiv, S. K., Harris, M. H., Gunier, R. B., Kogut, K. R., Harley, K. G., Deardorff, J., Bradman, A., Holland, N., & Eskenazi, B. (2018). Prenatal Organophosphate Pesticide Exposure and Traits Related to Autism Spectrum Disorders in a Population Living in Proximity to Agriculture. Environmental Health Perspectives, 126(4), 047012. https://doi.org/10.1289/ehp2580
Van den Neucker K., Vanderstraeten G., De Muynck M., De Wilde V. (1991). The neurophysiologic examination in organophosphate ester poisoning. Case report and review of the literature. PubMed, 31(8), 507–511.
Velmurugan, G., Ramprasath, T., Swaminathan, K., Mithieux, G., Rajendhran, J., Dhivakar, M., Parthasarathy, A., Babu, D. D. V., Thumburaj, L. J., Freddy, A. J., Dinakaran, V., Puhari, S. S. M., Rekha, B., Christy, Y. J., Anusha, S., Divya, G., Suganya, K., Meganathan, B., Kalyanaraman, N., & Vasudevan, V. (2017). Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biology, 18(1). https://doi.org/10.1186/s13059-016-1134-6
Vommaro A., Alves M., Natália V., Oliveira S., Gomes R., & Sintia M. (2010). Praguicidas Organofosforados E Sua Toxicidade. http://www.pergamum.univale.br/pergamum/tcc/Praguicidasorganofosforadosesuatoxicidad
Yoshimasu K., Kiyohara C., Takemura S., & Nakai K. (2014). A meta-analysis of the evidence on the impact of prenatal and early infancy exposures to mercury on autism and attention deficit/hyperactivity disorder in the childhood. Neurotoxicology, 44, 121–31. https://doi.org/10.1016/j.neuro.2014.06.007
Zhang, J., Dai, H., Deng, Y., Tian, J., Zhang, C., Hu, Z., Bing, G., & Zhao, L. (2015). Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats. Toxicology, 336, 17–25. https://doi.org/10.1016/j.tox.2015.07.014
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Larissa Dayelle Osternack; William Mattana dos Santos; Djanira Aparecida da Luz Veronez

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.