Microscopic analysis of surface characteristics and chemical composition spectroscopy of different orthodontic archwire
DOI:
https://doi.org/10.33448/rsd-v14i3.48429Keywords:
Orthodontics, Scanning Electron Microscopy, Surface Properties.Abstract
Este estudo teve como objetivo avaliar as características superficiais e composição química de arcos ativados termicamente utilizados em sistemas autoligados. Arcos de NiTi e CuNiTi com diâmetro 0,014 (Ormco, Aditek, Orthometric, Morelli e Smart4Y) foram submetidos à condições variáveis utilizando segmentos de 10 mm divididos em 3 grupos de acordo com a imersão: não submetidos à imersão, saliva artificial (Kin Hidrat) e solução ácida (pH 4,3) utilizando 2 mL de solução e mantidos a 37ºC por 28 dias. Em seguida, as amostras foram avaliadas em microscopia eletrônica de varredura Personal SEM© eXpress™ (Aspex Corporation, Oregon, EUA). A análise semi-quantitativa realizada no modo de espectroscopia por energia dispersiva de raios X avaliou a composição química da superfície. O fio CuNiTi (Ormco) apresentou maior rugosidade, enquanto o fio termicamente ativado (Morelli), o menor. Nos fios imersos em saliva artificial a alteração superficial foi evidente. Na análise da composição química, os fios CuNiTi apresentaram porcentagens de Cu próximas a 6%. Baixas porcentagens (<0,3%) de Cu foram detectadas nos demais fios avaliados. Para todos os grupos houve predomínio dos íons Ni e Ti. Nos fios imersos em saliva artificial íons Na, Cl e K foram detectados, sugerindo componentes de deposição de saliva na superfície dos fios. Arcos CuNiTi apresentaram características de rugosidade superficial mais irregular em comparação aos demais fios avaliados. A imersão em saliva artificial alterou a superfície dos fios com deposição de íons.
Downloads
References
Aboalnaga, A. A., & Shahawi, A. M. E. (2023). Comparison of surface roughness and hardness of three different brands of esthetic coated NiTi archwires: invitro study. BMC Oral Health. 23(1), 816.
Ashok, T., Ammayappan, P., Alexander, L., Kengadaran, S., & Kumar, P. (2024). Evaluation of the efficiency of SmartArch, copper-NiTi, and NiTi archwires in resolving mandibular anterior crowding: A double-blinded randomized controlled trial. J Orthod Sci. 25;13, 42.
Bahije, L., Benyahia, H., El Hamzaoui, S., Ebn Touhami, M., Bengueddour, R., Rerhrhaye, W. … Zaoui, F.(2011). Comportement du NiTi en priesence des bactieries orales : corrosion par le Streptococcus mutans. Int Orthod. 9(1), 110–9.
Bharathi, V. S., Kaul A., Tiwari A., Aliya, S., Yadav, A., Bera, T., & Kaur Makkad, P. (2024) Assessment of Various Archwire Materials and Their Impact on Orthodontic Treatment Outcomes. Cureus. 16(9), e69667.
Biermann, M. C., Berzins, D. W., & Bradley, T. G. (2007). Thermal analysis of as-received and clinically retrieved copper-nickel-titanium orthodontic archwires. Angle Orthod. 77(3), 499–503.
Čelar, A. G., Schedlberger, M., Dörfler, P., & Bertl, M. H. (2013). Systematisches Review über ligaturfreie und konventionelle Brackets: initiale Schmerzen, Anzahl der Behandlungstermine, Therapiedauer. J Orofac Orthop. 74(1), 40–51.
Fernandes, D. J., Peres, R. V., Mendes, A. M., & Elias, C .N. ( 2011). Understanding the shape-memory alloys used in orthodontics. ISRN Dent. 2011:132408.
Fischer-Brandies, H., Es-Souni, M., Kock, N., Raetzke, K., & Bock, O. (2003). Transformation Behavior, Chemical Composition, Surface Topography and Bending Properties of Five Selected 0.016’’ × 0.022’’ NiTi Archwires. J Orofac Orthop. 64(2), 88–99.
Gil, F. J., & Planell, J. A. (1999) Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications. J Biomed Mater Res. 48(5), 682–8.
Gravina, M. A., Canavarro, C., Elias, C. N., Graças, A. M. C. M., Brunharo, I. H. V. P., & Quintão, C. C. A. (2014). Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics. Dental Press J Orthod. 19(1), 69–76.
Guerrero, A. P., Guariza Filho, O., Tanaka, O., Camargo, E .S., & Vieira, S. (2010). Evaluation of frictional forces between ceramic brackets and archwires of different alloys compared with metal brackets. Braz Oral Res. 24(1), 40–5.
Gurgel, J. A., Kerr, S., Powers, J. M., & LeCrone, V.(2001). Force-deflection properties of superelastic nickel-titanium archwires. Am J Orthod Dentofac Orthop.120(4), 378–82.
Huang, H. H. (2005). Surface characterizations and corrosion resistance of nickel-titanium orthodontic archwires in artificial saliva of various degrees of acidity. J Biomed Mater Res A. 74(4), 629–39.
Jaber, L. C., Rodrigues, J. A., Amaral, F. L., França, F. M., Basting, R. T., & Turssi, C. P. (2014). Degradation of orthodontic wires under simulated cariogenic and erosive conditions. Braz Oral Res. 28(1), 1–6.
Jain, A. K., Savana, K., Singh, S., Brajendu, Roy, S., & Priya, P. (2024). Biomechanical Evaluation of Different Orthodontic Archwire Materials and Their Effect on Tooth Movement Efficiency. J Pharm Bioallied Sci. (Suppl 4), S3358-S3360.
Kao, C. T., Ding, S. J., Wang, C. K., He, H., Chou, M. Y., & Huang, T. H. (2006). Comparison of frictional resistance after immersion of metal brackets and orthodontic wires in a fluoride-containing prophylactic agent. Am J Orthod Dentofac Orthop. 130(5), 1–9.
Leite, V. V., Lopes, M. B., Gonini, A. Jr., Almeida, M. R., Moura, S. K., & Almeida, R. R. (2014). Comparison of frictional resistance between self-ligating and conventional brackets tied with elastomeric and metal ligature in orthodontic archwires. Dental Press J Orthod. 19(3), 114–9.
Li, X., Yang, Y., Shen, H., Zhou, M., Huang, B., Cui, L., & Hao, S. (2025). Research progress on surface modification and coating technologies of biomedical NiTi alloys. Colloids Surf B Biointerfaces. 249, 114496.
Mane, P. N., Pawar, R., Ganiger, C., & Phaphe S. (2012). Effect of fluoride prophylactic agents on the surface topography of NiTi and CuNiTi wires. J Contemp Dent Pract.13(3), 285–8.
Marzal, R., Albaladejo, A., Curto, D., & Curto A. (2025). Influence of orthodontic archwire (nickel-titanium versus copper-nickel-titanium) on pain in adult patients in the aligning phase of treatment with self-ligating brackets (two months of follow-up): a prospective observational pilot study. Head Face Med. 21(1), 9.
Mikulewicz, M., Suski, P., Tokarczuk, O., Warzyńska-Maciejewska, M., Pohl, P., & Tokarczuk, B. (2024). Metal Ion Release from Orthodontic Archwires: A Comparative Study of Biocompatibility and Corrosion Resistance. Molecules. 29(23), 5685.
Nanjundan, K., & Vimala, G. (2016). Evaluation of frictional resistance and surface characteristics after immersion of orthodontic brackets and wire in different chemical solutions: A comparative in vitrostudy. Indian J Dent Res. 27(5), 513.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [E-book]. Editora da UAB/NTE/UFSM.
Pizzoni, L., Ravnholt, G., & Melsen, B. (1998). Frictional forces related to self-ligating brackets. Eur J Orthod. 20(3), 283–91.
Sachdeva, R. C. (2001). SureSmile technology in a patient--centered orthodontic practice. J Clin Orthod. 35(4), 245–53.
Savoldi, F., Visconti, L., Dalessandri, D., Bonetti, S., Tsoi, J. K. H., Matinlinna, J. P., & Paganelli, C. (2017). In vitro evaluation of the influence of velocity on sliding resistance of stainless steel arch wires in a self-ligating orthodontic bracket. Orthod Craniofac Res. 20(2),119–25.
Shitsuka, D. M., Shitsuka, C. D. W. M., Shitsuka, R., & Shitsuka, R. I. C. M. (2014). Matemática fundamental para tecnologia (2ª ed.). Editora Érica.
Sufarnap, E., Harahap, K. I., Cynthiana, S., & Reza, M. (2023). Nickel and copper ion release, deflection and the surface roughness of copper-nickel-titanium orthodontic archwire in sodium fluoride solution. J Orthod Sci. 4;12, 44.
Turnbull, N. R., & Birnie, D. J. (2017). Treatment efficiency of conventional vs self-ligating brackets: Effects of archwire size and material. Am J Orthod Dentofac Orthop.131(3), 395–9.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Marina Angélica Marciano; Thiago Bessa Marconato Antunes; Ribamar Lazanha Lucateli; Ana Cristina Padilha Janini; Bruno Martini Guimarães; Adriana de Jesus Soares; Talita Tartari; Brenda P. F. A. Gomes; Maria Eugenia Pincke Coutinho

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.