Microscopic analysis of surface characteristics and chemical composition spectroscopy of different orthodontic archwire

Authors

DOI:

https://doi.org/10.33448/rsd-v14i3.48429

Keywords:

Orthodontics, Scanning Electron Microscopy, Surface Properties.

Abstract

Este estudo teve como objetivo avaliar as características superficiais e composição química de arcos ativados termicamente utilizados em sistemas autoligados. Arcos de NiTi e CuNiTi com diâmetro 0,014 (Ormco, Aditek, Orthometric, Morelli e Smart4Y) foram submetidos à condições variáveis utilizando segmentos de 10 mm divididos em 3 grupos de acordo com a imersão: não submetidos à imersão, saliva artificial (Kin Hidrat) e solução ácida (pH 4,3) utilizando 2 mL de solução e mantidos a 37ºC por 28 dias. Em seguida, as amostras foram avaliadas em microscopia eletrônica de varredura Personal SEM© eXpress™ (Aspex Corporation, Oregon, EUA). A análise semi-quantitativa realizada no modo de espectroscopia por energia dispersiva de raios X avaliou a composição química da superfície. O fio CuNiTi (Ormco) apresentou maior rugosidade, enquanto o fio termicamente ativado (Morelli), o menor. Nos fios imersos em saliva artificial a alteração superficial foi evidente. Na análise da composição química, os fios CuNiTi apresentaram porcentagens de Cu próximas a 6%. Baixas porcentagens (<0,3%) de Cu foram detectadas nos demais fios avaliados. Para todos os grupos houve predomínio dos íons Ni e Ti. Nos fios imersos em saliva artificial íons Na, Cl e K foram detectados, sugerindo componentes de deposição de saliva na superfície dos fios. Arcos CuNiTi apresentaram características de rugosidade superficial mais irregular em comparação aos demais fios avaliados. A imersão em saliva artificial alterou a superfície dos fios com deposição de íons.

Downloads

Download data is not yet available.

References

Aboalnaga, A. A., & Shahawi, A. M. E. (2023). Comparison of surface roughness and hardness of three different brands of esthetic coated NiTi archwires: invitro study. BMC Oral Health. 23(1), 816.

Ashok, T., Ammayappan, P., Alexander, L., Kengadaran, S., & Kumar, P. (2024). Evaluation of the efficiency of SmartArch, copper-NiTi, and NiTi archwires in resolving mandibular anterior crowding: A double-blinded randomized controlled trial. J Orthod Sci. 25;13, 42.

Bahije, L., Benyahia, H., El Hamzaoui, S., Ebn Touhami, M., Bengueddour, R., Rerhrhaye, W. … Zaoui, F.(2011). Comportement du NiTi en priesence des bactieries orales : corrosion par le Streptococcus mutans. Int Orthod. 9(1), 110–9.

Bharathi, V. S., Kaul A., Tiwari A., Aliya, S., Yadav, A., Bera, T., & Kaur Makkad, P. (2024) Assessment of Various Archwire Materials and Their Impact on Orthodontic Treatment Outcomes. Cureus. 16(9), e69667.

Biermann, M. C., Berzins, D. W., & Bradley, T. G. (2007). Thermal analysis of as-received and clinically retrieved copper-nickel-titanium orthodontic archwires. Angle Orthod. 77(3), 499–503.

Čelar, A. G., Schedlberger, M., Dörfler, P., & Bertl, M. H. (2013). Systematisches Review über ligaturfreie und konventionelle Brackets: initiale Schmerzen, Anzahl der Behandlungstermine, Therapiedauer. J Orofac Orthop. 74(1), 40–51.

Fernandes, D. J., Peres, R. V., Mendes, A. M., & Elias, C .N. ( 2011). Understanding the shape-memory alloys used in orthodontics. ISRN Dent. 2011:132408.

Fischer-Brandies, H., Es-Souni, M., Kock, N., Raetzke, K., & Bock, O. (2003). Transformation Behavior, Chemical Composition, Surface Topography and Bending Properties of Five Selected 0.016’’ × 0.022’’ NiTi Archwires. J Orofac Orthop. 64(2), 88–99.

Gil, F. J., & Planell, J. A. (1999) Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications. J Biomed Mater Res. 48(5), 682–8.

Gravina, M. A., Canavarro, C., Elias, C. N., Graças, A. M. C. M., Brunharo, I. H. V. P., & Quintão, C. C. A. (2014). Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics. Dental Press J Orthod. 19(1), 69–76.

Guerrero, A. P., Guariza Filho, O., Tanaka, O., Camargo, E .S., & Vieira, S. (2010). Evaluation of frictional forces between ceramic brackets and archwires of different alloys compared with metal brackets. Braz Oral Res. 24(1), 40–5.

Gurgel, J. A., Kerr, S., Powers, J. M., & LeCrone, V.(2001). Force-deflection properties of superelastic nickel-titanium archwires. Am J Orthod Dentofac Orthop.120(4), 378–82.

Huang, H. H. (2005). Surface characterizations and corrosion resistance of nickel-titanium orthodontic archwires in artificial saliva of various degrees of acidity. J Biomed Mater Res A. 74(4), 629–39.

Jaber, L. C., Rodrigues, J. A., Amaral, F. L., França, F. M., Basting, R. T., & Turssi, C. P. (2014). Degradation of orthodontic wires under simulated cariogenic and erosive conditions. Braz Oral Res. 28(1), 1–6.

Jain, A. K., Savana, K., Singh, S., Brajendu, Roy, S., & Priya, P. (2024). Biomechanical Evaluation of Different Orthodontic Archwire Materials and Their Effect on Tooth Movement Efficiency. J Pharm Bioallied Sci. (Suppl 4), S3358-S3360.

Kao, C. T., Ding, S. J., Wang, C. K., He, H., Chou, M. Y., & Huang, T. H. (2006). Comparison of frictional resistance after immersion of metal brackets and orthodontic wires in a fluoride-containing prophylactic agent. Am J Orthod Dentofac Orthop. 130(5), 1–9.

Leite, V. V., Lopes, M. B., Gonini, A. Jr., Almeida, M. R., Moura, S. K., & Almeida, R. R. (2014). Comparison of frictional resistance between self-ligating and conventional brackets tied with elastomeric and metal ligature in orthodontic archwires. Dental Press J Orthod. 19(3), 114–9.

Li, X., Yang, Y., Shen, H., Zhou, M., Huang, B., Cui, L., & Hao, S. (2025). Research progress on surface modification and coating technologies of biomedical NiTi alloys. Colloids Surf B Biointerfaces. 249, 114496.

Mane, P. N., Pawar, R., Ganiger, C., & Phaphe S. (2012). Effect of fluoride prophylactic agents on the surface topography of NiTi and CuNiTi wires. J Contemp Dent Pract.13(3), 285–8.

Marzal, R., Albaladejo, A., Curto, D., & Curto A. (2025). Influence of orthodontic archwire (nickel-titanium versus copper-nickel-titanium) on pain in adult patients in the aligning phase of treatment with self-ligating brackets (two months of follow-up): a prospective observational pilot study. Head Face Med. 21(1), 9.

Mikulewicz, M., Suski, P., Tokarczuk, O., Warzyńska-Maciejewska, M., Pohl, P., & Tokarczuk, B. (2024). Metal Ion Release from Orthodontic Archwires: A Comparative Study of Biocompatibility and Corrosion Resistance. Molecules. 29(23), 5685.

Nanjundan, K., & Vimala, G. (2016). Evaluation of frictional resistance and surface characteristics after immersion of orthodontic brackets and wire in different chemical solutions: A comparative in vitrostudy. Indian J Dent Res. 27(5), 513.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [E-book]. Editora da UAB/NTE/UFSM.

Pizzoni, L., Ravnholt, G., & Melsen, B. (1998). Frictional forces related to self-ligating brackets. Eur J Orthod. 20(3), 283–91.

Sachdeva, R. C. (2001). SureSmile technology in a patient--centered orthodontic practice. J Clin Orthod. 35(4), 245–53.

Savoldi, F., Visconti, L., Dalessandri, D., Bonetti, S., Tsoi, J. K. H., Matinlinna, J. P., & Paganelli, C. (2017). In vitro evaluation of the influence of velocity on sliding resistance of stainless steel arch wires in a self-ligating orthodontic bracket. Orthod Craniofac Res. 20(2),119–25.

Shitsuka, D. M., Shitsuka, C. D. W. M., Shitsuka, R., & Shitsuka, R. I. C. M. (2014). Matemática fundamental para tecnologia (2ª ed.). Editora Érica.

Sufarnap, E., Harahap, K. I., Cynthiana, S., & Reza, M. (2023). Nickel and copper ion release, deflection and the surface roughness of copper-nickel-titanium orthodontic archwire in sodium fluoride solution. J Orthod Sci. 4;12, 44.

Turnbull, N. R., & Birnie, D. J. (2017). Treatment efficiency of conventional vs self-ligating brackets: Effects of archwire size and material. Am J Orthod Dentofac Orthop.131(3), 395–9.

Downloads

Published

2025-03-16

Issue

Section

Health Sciences

How to Cite

Microscopic analysis of surface characteristics and chemical composition spectroscopy of different orthodontic archwire. Research, Society and Development, [S. l.], v. 14, n. 3, p. e4414348429, 2025. DOI: 10.33448/rsd-v14i3.48429. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/48429. Acesso em: 28 jun. 2025.