Análise microscópica de características de superfície e espectroscopia da composição química de diferentes arcos ortodônticos
DOI:
https://doi.org/10.33448/rsd-v14i3.48429Palavras-chave:
Ortodontia, Microscopia Eletrônica de Varredura, Propriedades de Superfície.Resumo
The aim of this study was evaluate the superficial characteristics and chemical composition of thermally activated archwires used in self-ligating systems. NiTi and CuNiTi of 0.014 diameter (Ormco, Aditek, Orthometric, Morelli and Smart4Y) submitted to variable conditions using segments measuring 10-mm divided in 3 groups according to the immersion: not submitted to immersion, artificial saliva (Kin Hidrat) and acid solution (pH 4.3) using 2 mL of solution and kept at 37oC for 28 days. Then, the samples were evaluated in scanning electron microscopy Personal SEM© eXpress™ (Aspex Corporation, Oregon, EUA). Semi-quantitative analysis performed in energy dispersive x-ray spectroscopy mode evaluated surface chemical composition. CuNiTi wire (Ormco) showed higher roughness, while thermally activated wire (Morelli) the lower. In the wires immersed in artificial saliva, the superficial alteration was evident. In the chemical composition analysis, the CuNiTi wires presented percentages of Cu near to 6%. Low percentages (<0.3%) of Cu were detected in the other wires evaluated. For all groups there was predominance of Ni and Ti ions. In the wires immersed in artificial saliva, the ions Na, Cl and K were detected, suggesting saliva deposition components in the surface of wires. CuNiTi wires showed roughness surface characteristics in comparison to the other evaluated wires. The immersion in artificial saliva altered the surface of wires with deposition of ions.
Referências
Aboalnaga, A. A., & Shahawi, A. M. E. (2023). Comparison of surface roughness and hardness of three different brands of esthetic coated NiTi archwires: invitro study. BMC Oral Health. 23(1), 816.
Ashok, T., Ammayappan, P., Alexander, L., Kengadaran, S., & Kumar, P. (2024). Evaluation of the efficiency of SmartArch, copper-NiTi, and NiTi archwires in resolving mandibular anterior crowding: A double-blinded randomized controlled trial. J Orthod Sci. 25;13, 42.
Bahije, L., Benyahia, H., El Hamzaoui, S., Ebn Touhami, M., Bengueddour, R., Rerhrhaye, W. … Zaoui, F.(2011). Comportement du NiTi en priesence des bactieries orales : corrosion par le Streptococcus mutans. Int Orthod. 9(1), 110–9.
Bharathi, V. S., Kaul A., Tiwari A., Aliya, S., Yadav, A., Bera, T., & Kaur Makkad, P. (2024) Assessment of Various Archwire Materials and Their Impact on Orthodontic Treatment Outcomes. Cureus. 16(9), e69667.
Biermann, M. C., Berzins, D. W., & Bradley, T. G. (2007). Thermal analysis of as-received and clinically retrieved copper-nickel-titanium orthodontic archwires. Angle Orthod. 77(3), 499–503.
Čelar, A. G., Schedlberger, M., Dörfler, P., & Bertl, M. H. (2013). Systematisches Review über ligaturfreie und konventionelle Brackets: initiale Schmerzen, Anzahl der Behandlungstermine, Therapiedauer. J Orofac Orthop. 74(1), 40–51.
Fernandes, D. J., Peres, R. V., Mendes, A. M., & Elias, C .N. ( 2011). Understanding the shape-memory alloys used in orthodontics. ISRN Dent. 2011:132408.
Fischer-Brandies, H., Es-Souni, M., Kock, N., Raetzke, K., & Bock, O. (2003). Transformation Behavior, Chemical Composition, Surface Topography and Bending Properties of Five Selected 0.016’’ × 0.022’’ NiTi Archwires. J Orofac Orthop. 64(2), 88–99.
Gil, F. J., & Planell, J. A. (1999) Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications. J Biomed Mater Res. 48(5), 682–8.
Gravina, M. A., Canavarro, C., Elias, C. N., Graças, A. M. C. M., Brunharo, I. H. V. P., & Quintão, C. C. A. (2014). Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics. Dental Press J Orthod. 19(1), 69–76.
Guerrero, A. P., Guariza Filho, O., Tanaka, O., Camargo, E .S., & Vieira, S. (2010). Evaluation of frictional forces between ceramic brackets and archwires of different alloys compared with metal brackets. Braz Oral Res. 24(1), 40–5.
Gurgel, J. A., Kerr, S., Powers, J. M., & LeCrone, V.(2001). Force-deflection properties of superelastic nickel-titanium archwires. Am J Orthod Dentofac Orthop.120(4), 378–82.
Huang, H. H. (2005). Surface characterizations and corrosion resistance of nickel-titanium orthodontic archwires in artificial saliva of various degrees of acidity. J Biomed Mater Res A. 74(4), 629–39.
Jaber, L. C., Rodrigues, J. A., Amaral, F. L., França, F. M., Basting, R. T., & Turssi, C. P. (2014). Degradation of orthodontic wires under simulated cariogenic and erosive conditions. Braz Oral Res. 28(1), 1–6.
Jain, A. K., Savana, K., Singh, S., Brajendu, Roy, S., & Priya, P. (2024). Biomechanical Evaluation of Different Orthodontic Archwire Materials and Their Effect on Tooth Movement Efficiency. J Pharm Bioallied Sci. (Suppl 4), S3358-S3360.
Kao, C. T., Ding, S. J., Wang, C. K., He, H., Chou, M. Y., & Huang, T. H. (2006). Comparison of frictional resistance after immersion of metal brackets and orthodontic wires in a fluoride-containing prophylactic agent. Am J Orthod Dentofac Orthop. 130(5), 1–9.
Leite, V. V., Lopes, M. B., Gonini, A. Jr., Almeida, M. R., Moura, S. K., & Almeida, R. R. (2014). Comparison of frictional resistance between self-ligating and conventional brackets tied with elastomeric and metal ligature in orthodontic archwires. Dental Press J Orthod. 19(3), 114–9.
Li, X., Yang, Y., Shen, H., Zhou, M., Huang, B., Cui, L., & Hao, S. (2025). Research progress on surface modification and coating technologies of biomedical NiTi alloys. Colloids Surf B Biointerfaces. 249, 114496.
Mane, P. N., Pawar, R., Ganiger, C., & Phaphe S. (2012). Effect of fluoride prophylactic agents on the surface topography of NiTi and CuNiTi wires. J Contemp Dent Pract.13(3), 285–8.
Marzal, R., Albaladejo, A., Curto, D., & Curto A. (2025). Influence of orthodontic archwire (nickel-titanium versus copper-nickel-titanium) on pain in adult patients in the aligning phase of treatment with self-ligating brackets (two months of follow-up): a prospective observational pilot study. Head Face Med. 21(1), 9.
Mikulewicz, M., Suski, P., Tokarczuk, O., Warzyńska-Maciejewska, M., Pohl, P., & Tokarczuk, B. (2024). Metal Ion Release from Orthodontic Archwires: A Comparative Study of Biocompatibility and Corrosion Resistance. Molecules. 29(23), 5685.
Nanjundan, K., & Vimala, G. (2016). Evaluation of frictional resistance and surface characteristics after immersion of orthodontic brackets and wire in different chemical solutions: A comparative in vitrostudy. Indian J Dent Res. 27(5), 513.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [E-book]. Editora da UAB/NTE/UFSM.
Pizzoni, L., Ravnholt, G., & Melsen, B. (1998). Frictional forces related to self-ligating brackets. Eur J Orthod. 20(3), 283–91.
Sachdeva, R. C. (2001). SureSmile technology in a patient--centered orthodontic practice. J Clin Orthod. 35(4), 245–53.
Savoldi, F., Visconti, L., Dalessandri, D., Bonetti, S., Tsoi, J. K. H., Matinlinna, J. P., & Paganelli, C. (2017). In vitro evaluation of the influence of velocity on sliding resistance of stainless steel arch wires in a self-ligating orthodontic bracket. Orthod Craniofac Res. 20(2),119–25.
Shitsuka, D. M., Shitsuka, C. D. W. M., Shitsuka, R., & Shitsuka, R. I. C. M. (2014). Matemática fundamental para tecnologia (2ª ed.). Editora Érica.
Sufarnap, E., Harahap, K. I., Cynthiana, S., & Reza, M. (2023). Nickel and copper ion release, deflection and the surface roughness of copper-nickel-titanium orthodontic archwire in sodium fluoride solution. J Orthod Sci. 4;12, 44.
Turnbull, N. R., & Birnie, D. J. (2017). Treatment efficiency of conventional vs self-ligating brackets: Effects of archwire size and material. Am J Orthod Dentofac Orthop.131(3), 395–9.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Marina Angélica Marciano; Thiago Bessa Marconato Antunes; Ribamar Lazanha Lucateli; Ana Cristina Padilha Janini; Bruno Martini Guimarães; Adriana de Jesus Soares; Talita Tartari; Brenda P. F. A. Gomes; Maria Eugenia Pincke Coutinho

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.