Combination of sheep fertilizer and probiotic improves zootechnical performance of Nile tilápia
DOI:
https://doi.org/10.33448/rsd-v14i5.48850Keywords:
Additives, Recirculation systems, Tilapia farming.Abstract
Nile tilapia faces challenges due to high costs and environmental impacts, including eutrophication and microbial resistance caused by excessive chemical use. Sustainable alternatives, such as probiotics and organic fertilisers, still lack comprehensive studies. This study evaluated the combined effects of the probiotic DB AQUA® with organic fertilisers (bovine, swine, and sheep) on the zootechnical performance and health of fingerlings. A total of 640 fish were tested in a recirculation system, divided into four treatments: isolated fertiliser (control) or probiotic combined with bovine, swine, or sheep fertiliser. Zootechnical parameters, hepatosomatic (HSI) and viscerosomatic (VSI) indices were analysed. The sheep fertiliser performed notably, reducing feed conversion by 60% and increasing biomass gain by 170.5 g, while also elevating HSI—indicating higher metabolic activity—and promoting 56% longer intestines, suggesting improved nutrient absorption. Survival rates did not differ between treatments, likely due to environmental factors. Bovine and swine fertilisers had limited effects, with swine presenting risks of accelerated ammonia release and pathogen contamination. In summary, the combination of DB AQUA® probiotic with sheep fertiliser significantly enhanced zootechnical performance, though its efficacy depends on water quality and management. Further studies are recommended to elucidate microbial mechanisms and economic viability on a large scale.
Downloads
References
Asha, A. A., Haque, M. M., Hossain, Md. K., Hasan, Md. M., Bashar, A., Hasan, Md. Z., Shohan, M. H., Farin, N. N., Schneider, P., & Bablee, A. L. (2024). Effects of Commercial Probiotics on the Growth Performance, Intestinal Microbiota and Intestinal Histomorphology of Nile Tilapia (Oreochromis niloticus) Reared in Biofloc Technology (BFT). Biology, 13(5), 299. https://doi.org/10.3390/biology13050299
Barlaya, G., Ananda Kumar, B. S., Rupa, T. R., Raghavendra, C. H., Saurabh, S., & Sridhar, N. (2021). Evaluation of the Effect of Different Locally Available Manures on Planktonic Quality and Quantity. Aquaculture, 1–15. https://doi.org/10.61885/joa.v29.2021.265
Bekman, O. R., & Neto, P. L. O. C. (2009). Análise Estatística da Decisão (2o ed). Editora Edgar Blucher.
Bondad‐Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday‐Sanz, V., Brun, E., Le Groumellec, M., Li, A., Surachetpong, W., Karunasagar, I., Hao, B., Dall’Occo, A., Urbani, R., & Caputo, A. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4), 1421–1451. https://doi.org/10.1111/raq.12786
Brito, J. M. D., Ferreira, A. H. C., Santana Júnior, H. A., Oliveira, A. P. A., Santos, C. H. L., & Oliveira, L. T. S. (2019). Desempenho zootécnico de juvenis de tilápias do Nilo (Oreochromis niloticus) alimentados com cepas probióticas e submetidos a desafio sanitário. Brazilian Animal Science, 20, 1–9. https://doi.org/10.1590/1809-6891v20e-37348
Chowdhury, P., Hossain, M., Raushon, N., & Rahman, M. (2018). Effects of different amounts of organic fertilizers on growth and production of tilapia in monoculture. International Journal of Agricultural Research, Innovation and Technology, 8(2), 24–31. https://doi.org/10.3329/ijarit.v8i2.40552
D’Abramo, L. (2025). Realizing the Potential of Aquaculture: Undertaking the Wicked Problems of Climate Change, Fed Production Systems and Global Food Security. Reviews in Fisheries Science & Aquaculture, 33(1), 1–7. https://doi.org/10.1080/23308249.2024.2389537
Diatta, A. A., Bassène, C., Manga, A. G. B., Senghor, Y., Sambou, M., & Mbow, C. (2024). Enhancing the sustainability of cowpea production through the integrated use of fish effluents and animal manure. Agrosystems, Geosciences & Environment, 7(4), e20578. https://doi.org/10.1002/agg2.20578
El-Naby, A. S. A., Asely, A. M. E., Hussein, M. N., Khattaby, A. E.-R. A., A.Sabry, E., Abdelsalam, M., & Samir, F. (2024). Effects of dietary fermented Saccharomyces cerevisiae extract (Hilyses) supplementation on growth, hematology, immunity, antioxidants, and intestinal health in Nile tilapia. Scientific Reports, 14(12583). https://doi.org/10.1038/s41598-024-62589-9
FAO. (2024). He State of World Fisheries and Aquaculture 2024 – Blue Transformation in action (Food and Agriculture Organization of the United Nations). Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cd0683en
Farías, D. R., Ibarra, R., Estévez, R. A., Tlusty, M. F., Nyberg, O., Troell, M., Avendaño-Herrera, R., & Norden, W. (2024). Towards Sustainable Antibiotic Use in Aquaculture and Antimicrobial Resistance: Participatory Experts’ Overview and Recommendations. Antibiotics, 13(9), 887. https://doi.org/10.3390/antibiotics13090887
Ferreira, A. H. C., Brito, J. M. de, Lopes, J. B., Júnior, H. A. de S., Batista, J. M. M., Silva, B. R. da, Souza, E. M., & Amorin, I. L. (2015). Probiótico na alimentação de pós-larvas de tilápias do Nilo submetidas a desafio sanitário. Revista Brasileira de Saúde e Produção Animal, 16(2). http://dx.doi.org/10.1590/S1519-99402015000200017
Ghori, I., Tubassam, M., Ahmad, T., Zuberi, A., & Imran, M. (2022). Gut microbiome modulation mediated by probiotics: Positive impact on growth and health status of Labeo rohita. Frontiers in Physiology, 13, 949559. https://doi.org/10.3389/fphys.2022.949559
Gil, A. C. (2017). Como Elaborar Projetos de Pesquisa (6o ed, Vol. 6). Editora Atlas.
Hajirezaee, S., Ramezani, S., & Ahani, S. (2024). Betaine and the probiotic, Lactobacillus rhamnosus in the diet of the Common carp, Cyprinus carpio: Effects on growth, digestive enzyme activities, antioxidant system, humoral and mucosal immunity and resistance to Streptococcus iniae. Aquaculture Reports, 38. https://doi.org/10.1016/j.aqrep.2024.102282
Hong, B., Li, Q., Li, J., Zhou, M., Wang, X., He, B., & Yu, S. (2023). Spectrum of pharmaceutical residues in commercial manure-based organic fertilizers from multi-provinces of China mainland in relation to animal farming and possible environmental risks of fertilization. Science of The Total Environment, 894, 165029. https://doi.org/10.1016/j.scitotenv.2023.165029
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous Inference in General Parametric Models. Biometrical Journal, 50(3), 346–363. https://doi.org/10.1002/bimj.200810425
Huang, X., He, H., Li, Z., Liu, C., Jiang, B., Huang, Y., Su, Y., & Li, W. (2024). Screening and effects of intestinal probiotics on growth performance, gut health, immunity, and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. Fish & Shellfish Immunology, 151, 109668. https://doi.org/10.1016/j.fsi.2024.109668
John, V. C., Verma, A. K., Krishnani, K. K., Munilkumar, S., Varghese, T., Hittinahalli, C. M., & S., A. (2025). Transforming waste to value: Exploring potential of different organic fertilizer extracts as supplement mineral nutrients in aquaculture wastewater towards sustainable production of Channa striata (Bloch, 1793) and Lactuca sativa L. aquaponics. Aquaculture International, 33(4), 256. https://doi.org/10.1007/s10499-025-01943-8
Jossefa, A. A., Nerantzoulis, I. C., & Mussagy, A. (2023). Supplementation of probiotics in Nile tilapia fingerling cultivation subjected to microbial challenge. Western Indian Ocean Journal of Marine Science, 21(2), 1–9. https://doi.org/10.4314/wiojms.v21i2.1
Kang’ombe, J., Brown, J. A., & Halfyard, L. C. (2006). Effect of using different types of organic animal manure on plankton abundance, and on growth and survival of Tilapia rendalli (Boulenger) in ponds. Aquaculture Research, 37(13), 1360–1371. https://doi.org/10.1111/j.1365-2109.2006.01569.x
Lenth, R. V. (2025). emmeans: Estimated Marginal Means, aka Least-Squares Means. https://doi.org/10.32614/CRAN.package.emmeans
Lundeba, M., Cole, S. M., Mekkawy, W., Yossa, R., Basiita, R. K., Nyirenda, M., Muyuni, N., & Benzie, J. A. H. (2022). On-farm participatory evaluation of feeding approaches used by farmers for tilapia (Oreochromis macrochir) production in northern Zambia. Aquaculture, 549, 9. https://doi.org/10.1016/j.aquaculture.2021.737747
Mahmoud, M. M. A., El-Lamie, M. M. M., Kilany, O. E., & Dessouki, A. A. (2018). Spirulina (Arthrospira platensis) supplementation improves growth performance, feed utilization, immune response, and relieves oxidative stress in Nile tilapia (Oreochromis niloticus) challenged with Pseudomonas fluorescens. Fish and Shellfish Immunology, 72, 291–300. https://doi.org/10.1016/j.fsi.2017.11.006
Maniraj, N. D. (2024). Fertilizers in Aquaculture: An Overview of its Types, Market Trends, and future. Pakistan Journal of Zoology, 1–12. https://doi.org/10.17582/journal.pjz/20240713054109
Mashhadizadeh, N., Khezri, S., Esfahani, D. E., Mohammadzadeh, S., Ahmadifar, E., Ahmadifar, M., Moghadam, M. S., & El-Haroun, E. (2024). Enhancing growth performance, antioxidant defense, immunity response, and resistance against heat stress in Nile Tilapia (Oreochromis niloticus) fed Saccharomyces boulardii and/or Bifidobacterium bifidum. Aquaculture Reports, 39, 102462. https://doi.org/10.1016/j.aqrep.2024.102462
Mustafa, A., Belavilas, M., Hossain, R., & Mishu, I. (2024). Immunological effects of vitamin c and zinc on tilapia (Orechromis niloticus) exposed to cold water stress. Plos One, 19(9). https://doi.org/10.1371/journal.pone.0311078
Naiel, M. A., Shehata, A. M., El-Kholy, A. I., El-Naggar, K., Farag, M. R., & AlagawanY, M. (2022). The mitigating role of probiotics against the adverse effects of suboptimal temperature in farmed fish: A review. Aquaculture, 550. https://doi.org/10.1016/j.aquaculture.2021.737877
Ogello, E. O., Wullur, S., & Hagiwara, A. (2019). Blending fishwastes and chicken manure extract as low-cost and stable diet for mass culture of freshwater zooplankton, optimized for aquaculture. IOP Conference Series: Materials Science and Engineering, 567(1), 012022. https://doi.org/10.1088/1757-899X/567/1/012022
Padeniya, U. M. (2025). Influence of dietary fermented yeast products (Saccharomyces cerevisiae) on performance, health and microbiome of Nile tilapia (Oreochromis niloticus) and the influence of discharge water in the production of romaine lettuce (Lactuca sativa). Animal Feed Science and Technology, 325.
PeixeBr. (2025). Anuário Brasileiro da Piscicultura PEIXE BR 2025. Peixe Br, 67. https://www.peixebr.com.br/anuario-2025/
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (1o ed). Manancial repositório digital da UFSM. http://repositorio.ufsm.br/handle/1/15824
Prakash Raman, R. (2023). Organic Manuring in Freshwater Aquaculture and Its Impact on Pond Ecosystem and Fish Health: An Overview. Journal of Aquaculture, 1–21. https://doi.org/10.61885/joa.v26.2018.144
Qu, B., Zhao, H., Chen, Y., & Yu, X. (2022). Effects of low-light stress on aquacultural water quality and disease resistance in Nile tilapia. Plos One, 17(5). https://doi.org/10.1371/journal.pone.0268114
R Core Team. (2025). R: A Language and Environment for Statistical Computing (Vienna, Austria). R Foundation for Statistical Computing.
Rodrigues, R. B., Meurer, F., Da Silva, D. M., Uczay, M., & Boscolo, W. R. (2017). Tecnologia de bioflocos no cultivo de tilápia do nilo (Oreochromis niloticus). Acta Tecnológica, 10(2), 75–89. https://doi.org/10.35818/acta.v10i2.351
Salger, S. A., Reza, J., Deck, C. A., Wahab, Md. A., Baltzegar, D. A., Murr, A. T., & Borski, R. J. (2020). Enhanced biodiversity of gut flora and feed efficiency in pond cultured tilapia under reduced frequency feeding strategies. Plos One, 15(7), e0236100. https://doi.org/10.1371/journal.pone.0236100
Shitsuka, R., Shitsuka, C. D. W. M., Shitsuka, R. I. C. M., Shitsuka, & Shitsuka, D. M. (2014). Matemática fundamental para tecnologia (2o ed). Editora Erica.
Silva, V. V., Salomão, R. A. S., Mareco, E. A., Dal Pai, M., & Santos, V. B. (2021). Probiotic additive affects muscle growth of Nile tilapia (Oreochromis niloticus). Aquaculture Research, 52(5), 2061–2069. https://doi.org/10.1111/are.15057
Taalab, H. A., Mohammady, E. Y., Hassan, T. M. M., Abdella, M. M., & Hassaan, M. S. (2022). β‐Carotene of Arthrospira platensis versus vitamin C and vitamin E as a feed supplement: Effects on growth, haemato‐biochemical, immune‐oxidative stress and related gene expression of Nile tilapia fingerlings. Aquaculture Research, 53(13), 4832–4846. https://doi.org/10.1111/are.15977
Tom, A. P., Jayakumar, J. S., Biju, M., Somarajan, J., & Ibrahim, M. A. (2021). Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus, 4, 100022. https://doi.org/10.1016/j.nexus.2021.100022
Vazzoler, A. E. A. de M. (1996). Biologia da reproducao de peixes teleósteos: Teoria e prática (Sao Paulo, Maringá). Editora EDUEM.
Vieira, S. (2021). Introdução à Bioestatística (6o ed). Editora GEN Guanabara Koogan.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. https://ggplot2.tidyverse.org
Wolff Ferreira, M., Martins Santos, R., Rodrigues Da Silva, A., Saory Makimoto, S., Capibaribe Barbosa, G. R., & Braziliano De Andrade, G. (2019). Mortality in Pacus (Piaractusmesopotamicus) caused by Pantoeaagglomerans and Pseudomonas aeruginosa in Excavated Tank. Acta Scientiae Veterinariae, 47. https://doi.org/10.22456/1679-9216.90826
Xia, Y., Wang, M., Gao, F., Lu, M., & Chen, G. (2020). Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). Animal Nutrition, 6, 11. https://doi.org/10.1016/j.aninu.2019.07.002
Zimmermann, S., Kiessling, A., & Zhang, J. (2023). The future of intensive tilapia production and the circular bioeconomy without effluents: Biofloc technology, recirculation aquaculture systems, bio‐RAS, partitioned aquaculture systems and integrated multitrophic aquaculture. Reviews in Aquaculture, 15(S1), 22–31. https://doi.org/10.1111/raq.12744
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gabriela Bom Ribeiro; Rita de Cassia Gonçalves Marques; Daniele Menezes Albuquerque

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.