Combinação de fertilizante ovino e probiótico melhoram desempenho zootécnico de tilápia do Nilo

Autores

DOI:

https://doi.org/10.33448/rsd-v14i5.48850

Palavras-chave:

Aditivos, Sistemas de recirculação, Tilapicultura.

Resumo

A tilápia do Nilo enfrenta desafios com os altos custos e impactos ambientais, incluindo eutrofização e resistência microbiana devido ao uso excessivo de químicos. Alternativas sustentáveis, como probióticos e fertilizantes orgânicos, ainda carecem de estudos integrados. Este trabalho avaliou se os efeitos combinados do probiótico DB AQUA® com fertilizantes orgânicos (bovino, suíno e ovino) afetam o desempenho zootécnico e saúde de alevinos. Foram testados 640 peixes em sistema de recirculação, distribuídos em quatro tratamentos, tais como fertilizante isolado (controle) ou probiótico combinado com fertilizante bovino, suíno ou ovino. Parâmetros zootécnicos e índices hepatossomático (IHS) e vicerossomático (IVS) foram analisados. O fertilizante ovino destacou-se, reduzindo a conversão alimentar em 60% e aumentando o ganho de biomassa em 170,5 g, além de elevar o IHS, indicando maior atividade metabólica e promover intestinos 56% mais longos, sugerindo melhor absorção de nutrientes. A sobrevivência não diferiu entre tratamentos, possivelmente devido a fatores ambientais. O fertilizante bovino e suíno tivera efeitos limitados, com o suíno apresentando riscos de liberação acelerada de amônia e contaminação por patógenos. Em suma a combinação do probiótico DB AQUA® com fertilizante ovino melhorou significativamente o desempenho zootécnico, mas sua eficácia depende da qualidade da água e manejo. Recomendam-se novos estudos para elucidar os mecanismos microbianos e viabilidade econômica em larga escala.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Gabriela Bom Ribeiro, Universidade Federal da Grande Dourados

     

     

  • Rita de Cassia Gonçalves Marques, Universidade Federal da Grande Dourados

     

     

     

  • Daniele Menezes Albuquerque, Universidade Federal da Grande Dourados

     

     

Referências

Asha, A. A., Haque, M. M., Hossain, Md. K., Hasan, Md. M., Bashar, A., Hasan, Md. Z., Shohan, M. H., Farin, N. N., Schneider, P., & Bablee, A. L. (2024). Effects of Commercial Probiotics on the Growth Performance, Intestinal Microbiota and Intestinal Histomorphology of Nile Tilapia (Oreochromis niloticus) Reared in Biofloc Technology (BFT). Biology, 13(5), 299. https://doi.org/10.3390/biology13050299

Barlaya, G., Ananda Kumar, B. S., Rupa, T. R., Raghavendra, C. H., Saurabh, S., & Sridhar, N. (2021). Evaluation of the Effect of Different Locally Available Manures on Planktonic Quality and Quantity. Aquaculture, 1–15. https://doi.org/10.61885/joa.v29.2021.265

Bekman, O. R., & Neto, P. L. O. C. (2009). Análise Estatística da Decisão (2o ed). Editora Edgar Blucher.

Bondad‐Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday‐Sanz, V., Brun, E., Le Groumellec, M., Li, A., Surachetpong, W., Karunasagar, I., Hao, B., Dall’Occo, A., Urbani, R., & Caputo, A. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4), 1421–1451. https://doi.org/10.1111/raq.12786

Brito, J. M. D., Ferreira, A. H. C., Santana Júnior, H. A., Oliveira, A. P. A., Santos, C. H. L., & Oliveira, L. T. S. (2019). Desempenho zootécnico de juvenis de tilápias do Nilo (Oreochromis niloticus) alimentados com cepas probióticas e submetidos a desafio sanitário. Brazilian Animal Science, 20, 1–9. https://doi.org/10.1590/1809-6891v20e-37348

Chowdhury, P., Hossain, M., Raushon, N., & Rahman, M. (2018). Effects of different amounts of organic fertilizers on growth and production of tilapia in monoculture. International Journal of Agricultural Research, Innovation and Technology, 8(2), 24–31. https://doi.org/10.3329/ijarit.v8i2.40552

D’Abramo, L. (2025). Realizing the Potential of Aquaculture: Undertaking the Wicked Problems of Climate Change, Fed Production Systems and Global Food Security. Reviews in Fisheries Science & Aquaculture, 33(1), 1–7. https://doi.org/10.1080/23308249.2024.2389537

Diatta, A. A., Bassène, C., Manga, A. G. B., Senghor, Y., Sambou, M., & Mbow, C. (2024). Enhancing the sustainability of cowpea production through the integrated use of fish effluents and animal manure. Agrosystems, Geosciences & Environment, 7(4), e20578. https://doi.org/10.1002/agg2.20578

El-Naby, A. S. A., Asely, A. M. E., Hussein, M. N., Khattaby, A. E.-R. A., A.Sabry, E., Abdelsalam, M., & Samir, F. (2024). Effects of dietary fermented Saccharomyces cerevisiae extract (Hilyses) supplementation on growth, hematology, immunity, antioxidants, and intestinal health in Nile tilapia. Scientific Reports, 14(12583). https://doi.org/10.1038/s41598-024-62589-9

FAO. (2024). He State of World Fisheries and Aquaculture 2024 – Blue Transformation in action (Food and Agriculture Organization of the United Nations). Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cd0683en

Farías, D. R., Ibarra, R., Estévez, R. A., Tlusty, M. F., Nyberg, O., Troell, M., Avendaño-Herrera, R., & Norden, W. (2024). Towards Sustainable Antibiotic Use in Aquaculture and Antimicrobial Resistance: Participatory Experts’ Overview and Recommendations. Antibiotics, 13(9), 887. https://doi.org/10.3390/antibiotics13090887

Ferreira, A. H. C., Brito, J. M. de, Lopes, J. B., Júnior, H. A. de S., Batista, J. M. M., Silva, B. R. da, Souza, E. M., & Amorin, I. L. (2015). Probiótico na alimentação de pós-larvas de tilápias do Nilo submetidas a desafio sanitário. Revista Brasileira de Saúde e Produção Animal, 16(2). http://dx.doi.org/10.1590/S1519-99402015000200017

Ghori, I., Tubassam, M., Ahmad, T., Zuberi, A., & Imran, M. (2022). Gut microbiome modulation mediated by probiotics: Positive impact on growth and health status of Labeo rohita. Frontiers in Physiology, 13, 949559. https://doi.org/10.3389/fphys.2022.949559

Gil, A. C. (2017). Como Elaborar Projetos de Pesquisa (6o ed, Vol. 6). Editora Atlas.

Hajirezaee, S., Ramezani, S., & Ahani, S. (2024). Betaine and the probiotic, Lactobacillus rhamnosus in the diet of the Common carp, Cyprinus carpio: Effects on growth, digestive enzyme activities, antioxidant system, humoral and mucosal immunity and resistance to Streptococcus iniae. Aquaculture Reports, 38. https://doi.org/10.1016/j.aqrep.2024.102282

Hong, B., Li, Q., Li, J., Zhou, M., Wang, X., He, B., & Yu, S. (2023). Spectrum of pharmaceutical residues in commercial manure-based organic fertilizers from multi-provinces of China mainland in relation to animal farming and possible environmental risks of fertilization. Science of The Total Environment, 894, 165029. https://doi.org/10.1016/j.scitotenv.2023.165029

Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous Inference in General Parametric Models. Biometrical Journal, 50(3), 346–363. https://doi.org/10.1002/bimj.200810425

Huang, X., He, H., Li, Z., Liu, C., Jiang, B., Huang, Y., Su, Y., & Li, W. (2024). Screening and effects of intestinal probiotics on growth performance, gut health, immunity, and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. Fish & Shellfish Immunology, 151, 109668. https://doi.org/10.1016/j.fsi.2024.109668

John, V. C., Verma, A. K., Krishnani, K. K., Munilkumar, S., Varghese, T., Hittinahalli, C. M., & S., A. (2025). Transforming waste to value: Exploring potential of different organic fertilizer extracts as supplement mineral nutrients in aquaculture wastewater towards sustainable production of Channa striata (Bloch, 1793) and Lactuca sativa L. aquaponics. Aquaculture International, 33(4), 256. https://doi.org/10.1007/s10499-025-01943-8

Jossefa, A. A., Nerantzoulis, I. C., & Mussagy, A. (2023). Supplementation of probiotics in Nile tilapia fingerling cultivation subjected to microbial challenge. Western Indian Ocean Journal of Marine Science, 21(2), 1–9. https://doi.org/10.4314/wiojms.v21i2.1

Kang’ombe, J., Brown, J. A., & Halfyard, L. C. (2006). Effect of using different types of organic animal manure on plankton abundance, and on growth and survival of Tilapia rendalli (Boulenger) in ponds. Aquaculture Research, 37(13), 1360–1371. https://doi.org/10.1111/j.1365-2109.2006.01569.x

Lenth, R. V. (2025). emmeans: Estimated Marginal Means, aka Least-Squares Means. https://doi.org/10.32614/CRAN.package.emmeans

Lundeba, M., Cole, S. M., Mekkawy, W., Yossa, R., Basiita, R. K., Nyirenda, M., Muyuni, N., & Benzie, J. A. H. (2022). On-farm participatory evaluation of feeding approaches used by farmers for tilapia (Oreochromis macrochir) production in northern Zambia. Aquaculture, 549, 9. https://doi.org/10.1016/j.aquaculture.2021.737747

Mahmoud, M. M. A., El-Lamie, M. M. M., Kilany, O. E., & Dessouki, A. A. (2018). Spirulina (Arthrospira platensis) supplementation improves growth performance, feed utilization, immune response, and relieves oxidative stress in Nile tilapia (Oreochromis niloticus) challenged with Pseudomonas fluorescens. Fish and Shellfish Immunology, 72, 291–300. https://doi.org/10.1016/j.fsi.2017.11.006

Maniraj, N. D. (2024). Fertilizers in Aquaculture: An Overview of its Types, Market Trends, and future. Pakistan Journal of Zoology, 1–12. https://doi.org/10.17582/journal.pjz/20240713054109

Mashhadizadeh, N., Khezri, S., Esfahani, D. E., Mohammadzadeh, S., Ahmadifar, E., Ahmadifar, M., Moghadam, M. S., & El-Haroun, E. (2024). Enhancing growth performance, antioxidant defense, immunity response, and resistance against heat stress in Nile Tilapia (Oreochromis niloticus) fed Saccharomyces boulardii and/or Bifidobacterium bifidum. Aquaculture Reports, 39, 102462. https://doi.org/10.1016/j.aqrep.2024.102462

Mustafa, A., Belavilas, M., Hossain, R., & Mishu, I. (2024). Immunological effects of vitamin c and zinc on tilapia (Orechromis niloticus) exposed to cold water stress. Plos One, 19(9). https://doi.org/10.1371/journal.pone.0311078

Naiel, M. A., Shehata, A. M., El-Kholy, A. I., El-Naggar, K., Farag, M. R., & AlagawanY, M. (2022). The mitigating role of probiotics against the adverse effects of suboptimal temperature in farmed fish: A review. Aquaculture, 550. https://doi.org/10.1016/j.aquaculture.2021.737877

Ogello, E. O., Wullur, S., & Hagiwara, A. (2019). Blending fishwastes and chicken manure extract as low-cost and stable diet for mass culture of freshwater zooplankton, optimized for aquaculture. IOP Conference Series: Materials Science and Engineering, 567(1), 012022. https://doi.org/10.1088/1757-899X/567/1/012022

Padeniya, U. M. (2025). Influence of dietary fermented yeast products (Saccharomyces cerevisiae) on performance, health and microbiome of Nile tilapia (Oreochromis niloticus) and the influence of discharge water in the production of romaine lettuce (Lactuca sativa). Animal Feed Science and Technology, 325.

PeixeBr. (2025). Anuário Brasileiro da Piscicultura PEIXE BR 2025. Peixe Br, 67. https://www.peixebr.com.br/anuario-2025/

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (1o ed). Manancial repositório digital da UFSM. http://repositorio.ufsm.br/handle/1/15824

Prakash Raman, R. (2023). Organic Manuring in Freshwater Aquaculture and Its Impact on Pond Ecosystem and Fish Health: An Overview. Journal of Aquaculture, 1–21. https://doi.org/10.61885/joa.v26.2018.144

Qu, B., Zhao, H., Chen, Y., & Yu, X. (2022). Effects of low-light stress on aquacultural water quality and disease resistance in Nile tilapia. Plos One, 17(5). https://doi.org/10.1371/journal.pone.0268114

R Core Team. (2025). R: A Language and Environment for Statistical Computing (Vienna, Austria). R Foundation for Statistical Computing.

https://www.R-project.org/

Rodrigues, R. B., Meurer, F., Da Silva, D. M., Uczay, M., & Boscolo, W. R. (2017). Tecnologia de bioflocos no cultivo de tilápia do nilo (Oreochromis niloticus). Acta Tecnológica, 10(2), 75–89. https://doi.org/10.35818/acta.v10i2.351

Salger, S. A., Reza, J., Deck, C. A., Wahab, Md. A., Baltzegar, D. A., Murr, A. T., & Borski, R. J. (2020). Enhanced biodiversity of gut flora and feed efficiency in pond cultured tilapia under reduced frequency feeding strategies. Plos One, 15(7), e0236100. https://doi.org/10.1371/journal.pone.0236100

Shitsuka, R., Shitsuka, C. D. W. M., Shitsuka, R. I. C. M., Shitsuka, & Shitsuka, D. M. (2014). Matemática fundamental para tecnologia (2o ed). Editora Erica.

Silva, V. V., Salomão, R. A. S., Mareco, E. A., Dal Pai, M., & Santos, V. B. (2021). Probiotic additive affects muscle growth of Nile tilapia (Oreochromis niloticus). Aquaculture Research, 52(5), 2061–2069. https://doi.org/10.1111/are.15057

Taalab, H. A., Mohammady, E. Y., Hassan, T. M. M., Abdella, M. M., & Hassaan, M. S. (2022). β‐Carotene of Arthrospira platensis versus vitamin C and vitamin E as a feed supplement: Effects on growth, haemato‐biochemical, immune‐oxidative stress and related gene expression of Nile tilapia fingerlings. Aquaculture Research, 53(13), 4832–4846. https://doi.org/10.1111/are.15977

Tom, A. P., Jayakumar, J. S., Biju, M., Somarajan, J., & Ibrahim, M. A. (2021). Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus, 4, 100022. https://doi.org/10.1016/j.nexus.2021.100022

Vazzoler, A. E. A. de M. (1996). Biologia da reproducao de peixes teleósteos: Teoria e prática (Sao Paulo, Maringá). Editora EDUEM.

Vieira, S. (2021). Introdução à Bioestatística (6o ed). Editora GEN Guanabara Koogan.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. https://ggplot2.tidyverse.org

Wolff Ferreira, M., Martins Santos, R., Rodrigues Da Silva, A., Saory Makimoto, S., Capibaribe Barbosa, G. R., & Braziliano De Andrade, G. (2019). Mortality in Pacus (Piaractusmesopotamicus) caused by Pantoeaagglomerans and Pseudomonas aeruginosa in Excavated Tank. Acta Scientiae Veterinariae, 47. https://doi.org/10.22456/1679-9216.90826

Xia, Y., Wang, M., Gao, F., Lu, M., & Chen, G. (2020). Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). Animal Nutrition, 6, 11. https://doi.org/10.1016/j.aninu.2019.07.002

Zimmermann, S., Kiessling, A., & Zhang, J. (2023). The future of intensive tilapia production and the circular bioeconomy without effluents: Biofloc technology, recirculation aquaculture systems, bio‐RAS, partitioned aquaculture systems and integrated multitrophic aquaculture. Reviews in Aquaculture, 15(S1), 22–31. https://doi.org/10.1111/raq.12744

Downloads

Publicado

2025-05-30

Edição

Seção

Ciências Agrárias e Biológicas

Como Citar

Combinação de fertilizante ovino e probiótico melhoram desempenho zootécnico de tilápia do Nilo. Research, Society and Development, [S. l.], v. 14, n. 5, p. e11614548850, 2025. DOI: 10.33448/rsd-v14i5.48850. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/48850. Acesso em: 28 jun. 2025.