Lipoprotein(a): Biomarker and risk factor in atherosclerosis – from pathophysiology to clinical practice
DOI:
https://doi.org/10.33448/rsd-v14i3.48379Keywords:
Lipoprotein(a), Atherosclerosis, Cardiovascular diseases.Abstract
Introduction: Lp(a) is a lipoprotein structurally similar to LDL, primarily composed of ApoB-100 and apolipoprotein(a). It is widely recognized as a risk factor for cardiovascular diseases due to its influence on atherosclerotic, inflammatory, and thrombogenic processes. Objective: The objective of this research is to conduct a literature review on lipoprotein(a), the pathophysiological mechanisms involved in the development of atherosclerotic lesions, its current clinical use, and an overview of therapeutic approaches. Method: A narrative literature review was conducted using the following databases: PubMed, Cochrane, JAMA, and Scielo. The search included the keywords: “Lipoprotein(a),” “Atherosclerosis,” and “Cardiovascular Diseases.” A total of 78 studies published in the last 40 years in English were selected based on their relevance to the topic. Results and Discussion: Lp(a) accumulates in atherosclerotic lesions, binds to the extracellular matrix, and transports oxidized phospholipids, promoting inflammation, endothelial dysfunction, and plaque instability. Additionally, it interferes with fibrinolysis and enhances platelet aggregation, favoring thrombosis. Studies highlight that elevated Lp(a) levels are associated with a higher risk of atherosclerotic disease, establishing it as an independent biomarker for cardiovascular events. Current guidelines recommend measuring Lp(a) at least once in a lifetime. Conclusion: Lipoprotein(a) [Lp(a)] is recognized as an independent biomarker and a significant cardiovascular risk factor, implicated in the pathophysiology of atherosclerosis, thrombogenicity, and vascular inflammation. Targeted therapies have emerged as promising alternatives; however, gaps remain regarding whether the therapeutic reduction of Lp(a) effectively prevents cardiovascular events.
Downloads
References
Allen S, Khan S, Tam S. P, Koschinsky M, Taylor P, & Yacoub M. (1998). Expression of adhesion molecules by Lp(a): a potential novel mechanism for its atherogenicity. FASEB J.;12(15), 1765–76. doi:10.1096/fasebj.12.15.1765. PMID:9837867.
Anglés-Cano E, & Rojas G. (2002). Apolipoprotein(a): structure-function relationship at the lysine-binding site and plasminogen activator cleavage site. Biol Chem.;383(1), 93–9. doi:10.1515/BC.2002.009. PMID:11928826.
Bdeir K, Cane W, Canziani G, Chaiken I, Weisel J, Koschinsky M. L, et al. (1999). Defensin promotes the binding of lipoprotein(a) to vascular matrix. Blood.; 94(6), 2007–19. PMID:10477730.
Berglund, L, & Ramakrishnan, R. (2004) Lipoproteína (a): um fator de risco cardiovascular indescritível. Trombo Arterioscler Vasc Biol ; 24:2219-2226
Bhatia, H. S., & Wilkinson, M. J. (2022). Lipoprotein(a): Evidence for role as a causal risk factor in cardiovascular disease and emerging therapies. Journal of Clinical Medicine, 11(20), 6040. https://doi.org/10.3390/jcm11206040
Bittner, V. A., Szarek, M., Aylward, P. E., Bhatt, D. L., Diaz, R., Edelberg, J. M., et al.; (2020). ODYSSEY OUTCOMES Committees and Investigators. Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome. Journal of the American College of Cardiology, 75(2), 133–144. https://doi.org/10.1016/j.jacc.2019.10.057
Boffa, M. B. (2022). Beyond fibrinolysis: The confounding role of Lp(a) in thrombosis. Atherosclerosis, 349, 72–81. https://doi.org/10.1016/j.atherosclerosis.2022.04.009
Boffa, M. B., & Koschinsky, M. L. (2019). Proprotein convertase subtilisin/kexin type 9 inhibitors and lipoprotein(a)-mediated risk of atherosclerotic cardiovascular disease: More than meets the eye? Current Opinion in Lipidology, 30(6), 428–437. https://doi.org/10.1097/MOL.0000000000000641
Boonmark N. W, Lou X. J, Yang Z. J, Schwartz K, Zhang J. L, Rubin E. M, & Lawn R. M. (1997). Modification of apolipoprotein(a) lysine binding site reduces atherosclerosis in transgenic mice. J Clin Invest.;100(3):558–64. doi:10.1172/JCI119565. PMID:9239402; PMCID:PMC508222.
Caplice, N. M., Panetta, C., Peterson, T. E., Kleppe, L. S., Mueske, C. S., Kostner, G. M., et al. (2001). Lipoprotein(a) binds and inactivates tissue factor pathway inhibitor: A novel link between lipoproteins and thrombosis. Blood, 98(10), 2980–2987. https://doi.org/10.1182/blood.v98.10.2980
Casarin, S. T. et al. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10 (5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924
Cavalcante, L. T. C. & Oliveira, A. A. S. (2020). Métodos de revisão bibliográfica nos estudos científicos. Psicol. Rev. 26(1). https://doi.org/10.5752/P.1678-9563.2020v26n1p82-100.
Cesena, F. H. Y. (2021). Very high lipoprotein(a) levels and cardiovascular risk. Revista da Sociedade de Cardiologia do Estado de São Paulo, 31(1), 52–62. https://doi.org/10.29381/0103-8559/2021310152-62
Clarke, R., Peden, J. F., Hopewell, J. C., Kyriakou, T., Goel, A., Heath, S. C., et al. (2009). Genetic variants associated with Lp(a) lipoprotein level and coronary disease. New England Journal of Medicine, 361(26), 2518–2528. https://doi.org/10.1056/NEJMoa0902604
Chemello, K., Chan, D. C., Lambert, G., & Watts, G. F. (2022). Recent advances in demystifying the metabolism of lipoprotein(a). Atherosclerosis, 349, 82–91. https://doi.org/10.1016/j.atherosclerosis.2022.04.002
Cho, T., Jung, Y., & Koschinsky, M. L. (2008). Apolipoprotein(a), through its strong lysine-binding site in KIV(10’), mediates increased endothelial cell contraction and permeability via a Rho/Rho kinase/MYPT1-dependent pathway. Journal of Biological Chemistry, 283(45), 30503–30512. https://doi.org/10.1074/jbc.M802648200
Cho, T., Romagnuolo, R., Scipione, C., Boffa, M. B., & Koschinsky, M. L. (2013). Apolipoprotein(a) stimulates nuclear translocation of β-catenin: A novel pathogenic mechanism for lipoprotein(a). Molecular Biology of the Cell, 24(3), 210–221. https://doi.org/10.1091/mbc.E12-08-0637
Diaz, N., Perez, C., Escribano, A. M., Sanz, G., Priego, J., Lafuente, C., et al. (2024). Discovery of potent small-molecule inhibitors of lipoprotein(a) formation. Nature, 629(8013), 945–950. https://doi.org/10.1038/s41586-024-07387-z
Edelstein, C., Italia, J. A., Klezovitch, O., & Scanu, A. M. (1996). Functional and metabolic differences between elastase-generated fragments of human lipoprotein(a) and apolipoprotein(a). Journal of Lipid Research, 37(8), 1786–1801. PMID: 8864963
Edelstein, C., Shapiro, S. D., Klezovitch, O., & Scanu, A. M. (1999). Macrophage metalloelastase, MMP-12, cleaves human apolipoprotein(a) in the linker region between kringles IV-4 and IV-5: potential relevance to lipoprotein(a) biology. Journal of Biological Chemistry, 274(15), 10019–10023. https://doi.org/10.1074/jbc.274.15.10019
Ehnholm C, Jauhiainen M, & Metso J. (1990). Interaction of lipoprotein(a) with fibronectin and its potential role in atherogenesis. Eur Heart J.;11(Suppl E), 190–5. doi:10.1093/eurheartj/11.suppl_e.190. PMID:2146125.
Enkhmaa B, Petersen K. S, Kris-Etherton P. M, & Berglund L. (2020) Diet and Lp(a): Does Dietary Change Modify Residual Cardiovascular Risk Conferred by Lp(a)? Nutrients.;12(7), 2024. doi:10.3390/nu12072024. PMID:32646066; PMCID:PMC7400957.
Etingin, O. R., Hajjar, D. P., Hajjar, K. A., Harpel, P. C., & Nachman, R. L. (1991). Lipoprotein(a) regulates plasminogen activator inhibitor-1 expression in endothelial cells: A potential mechanism in thrombogenesis. Journal of Biological Chemistry, 266(4), 2459–2465. PMID: 1824942
Falcone D. J, & Salisbury B. G. (1988). Fibronectin stimulates macrophage uptake of low density lipoprotein-heparin-collagen complexes. (1988) Arterioscler.;8(3),263–73. doi:10.1161/01.atv.8.3.263. PMID:3370022.
Fless, G. M., ZumMallen, M. E., & Scanu, A. M. (1986). Physicochemical properties of apolipoprotein(a) and lipoprotein(a) derived from the dissociation of human plasma lipoprotein (a). Journal of Biological Chemistry, 261(19), 8712–8718.
Frank S. L, Klisak I, Sparkes R. S, Mohandas T, Tomlinson J. E, McLean J. W, Lawn R. M, & Lusis A. J. (1988). The apolipoprotein(a) gene resides on human chromosome 6q26-27, in close proximity to the homologous gene for plasminogen. Hum Genet. Aug;79(4), 352-6. doi: 10.1007/BF00282175. PMID: 3410459.
Galvano, F., Li Volti, G., Gazzolo, D., Frigiola, A., & Romano, C. (2010). The physiopathology of lipoprotein (a). Frontiers in Bioscience, S2, 866–875. https://doi.org/10.2741/s75
Ganné, F., Vasse, M., Beaudeux, J. L., Peynet, J., François, A., Paysant, J., et al. (1999). Increased expression of u-PA and u-PAR on monocytes by LDL and Lp(a) lipoproteins—consequences for plasmin generation and monocyte adhesion. Thrombosis and Haemostasis, 81(4), 594–600. PMID: 10235446
Grundy, S. M., Stone, N. J., Bailey, A. L., Beam, C., Birtcher, K. K., Blumenthal, R. S., et al. (2019). 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology, 73(24), e285–e350. https://doi.org/10.1016/j.jacc.2018.11.002
Handhle, A., Viljoen, A., & Wierzbicki, A. S. (2021). Elevated Lipoprotein(a): Background, current insights, and future potential therapies. Vascular Health Risk Management, 17, 527–542. https://doi.org/10.2147/VHRM.S266244
Jawi M. M, Frohlich J. & Chan S. Y. (2020). Lipoprotein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipoprotein(a) Molecule. J Lipids.;2020, 3491764. doi:10.1155/2020/3491764. PMID:32099678; PMCID:PMC7016456.
Klezovitch, O., Edelstein, C., & Scanu, A. M. (2001). Stimulation of interleukin-8 production in human THP-1 macrophages by apolipoprotein(a): Evidence for a critical involvement of elements in its C-terminal domain. Journal of Biological Chemistry, 276(50), 46864–46869. https://doi.org/10.1074/jbc.M107943200
Klezovitch O, Edelstein C, Zhu L & Scanu A. M. (1998). Apolipoprotein(a) binds via its C-terminal domain to the protein core of the proteoglycan decorin. Implications for the retention of lipoprotein(a) in atherosclerotic lesions. J Biol Chem.; 273(37), 23856–65. doi:10.1074/jbc.273.37.23856. PMID:9726998.
Koschinsky, M. L., & Boffa, M. B. (2022a). Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry, and pathophysiology. Atherosclerosis, 349, 92–100. https://doi.org/10.1016/j.atherosclerosis.2022.04.001
Koschinsky, M. L., & Boffa, M. B. (2022b). Lipoprotein(a) and cardiovascular disease. Biochemical Journal, 481(19), 1277–1296. https://doi.org/10.1042/BCJ20240037
Koschinsky, M. L., & Kronenberg, F. (2022). The long journey of lipoprotein(a) from cardiovascular curiosity to therapeutic target. Atherosclerosis, 349, 1–6. https://doi.org/10.1016/j.atherosclerosis.2022.04.017
Kreuzer J, Lloyd M. B, Bok D, Fless G. M, Scanu A. M, Lusis A. J, & Haberland M. E. (1994). Lipoprotein(a) displays increased accumulation compared with low-density lipoprotein in the murine arterial wall. Chem Phys Lipids;67–68:175–90. doi:10.1016/0009-3084(94)90137-6. PMID:8187212.
Labudovic, D., Kostovska, I., Tosheska Trajkovska, K., Cekovska, S., Brezovska Kavrakova, J., & Topuzovska, S. (2019). Lipoprotein(a) – Link between Atherogenesis and Thrombosis. Prague Medical Report, 120(2–3), 39–51. https://doi.org/10.14712/23362936.2019.9
Lampsas, S., Xenou, M., Oikonomou, E., et al. (2023). Lipoprotein(a) in atherosclerotic diseases: From pathophysiology to diagnosis and treatment. Molecules, 28(3), 969. https://doi.org/10.3390/molecules28030969
Leibundgut, G., Scipione, C., Yin, H., Schneider, M., Boffa, M. B., Green, S., et al. (2013). Determinants of binding of oxidized phospholipids on apolipoprotein(a) and lipoprotein(a). Journal of Lipid Research, 54(10), 2815–2830. https://doi.org/10.1194/jlr.M040733
Liu, H., Fu, D., Luo, Y., et al. (2022). Independent association of Lp(a) with platelet reactivity in subjects without statins or antiplatelet agents. Scientific Reports, 12, 16609. https://doi.org/10.1038/s41598-022-21121-7
Mach, F., Baigent, C., Catapano, A. L., Koskinas, K. C., Casula, M., Badimon, L., et al. (2020). 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. European Heart Journal, 41(1), 111–188. https://doi.org/10.1093/eurheartj/ehz455
Maloberti, A., Fabbri, S., Colombo, V., Gualini, E., Monticelli, M., Daus, F., et al. (2022). Lipoprotein(a): Cardiovascular disease, aortic stenosis, and new therapeutic options. International Journal of Molecular Sciences, 24(1), 170. https://doi.org/10.3390/ijms24010170
Maranhão, R. C., Carvalho, P. O., Strunz, C. C., & Pileggi, F. (s.d.). (2014) Lipoproteína(a): Estrutura, metabolismo, fisiopatologia e implicações clínicas. Arquivos Brasileiros de Cardiologia, 103 (1) • Jul 2014. https://doi.org/10.5935/abc.20140101
Miles L. A, Fless G. M, Scanu A. M, Baynham P, Sebald M. T, Skocir P, et al. (1995). Interaction of Lp(a) with plasminogen binding sites on cells. Thromb Haemost. 1995;73(3), 458–65. PMID:7667829.
Moser T. L, Enghild J. J, Pizzo S. V, & Stack M. S. (1993). The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator. J Biol Chem.;268(25), 18917–23. PMID:8360181.
Moreau, M., Brocheriou, I., Petit, L., Ninio, E., Chapman, M. J., & Rouis, M. (1999). Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of atherosclerotic plaque. Circulation, 99(3), 420–426. https://doi.org/10.1161/01.CIR.99.3.420
Nicholls, S. J. (2024). Therapeutic potential of lipoprotein(a) inhibitors. Drugs, 84(6), 637–643. https://doi.org/10.1007/s40265-024-02046-z
Nicholls, S. J., Nissen, S. E., Fleming, C., Urva, S., Suico, J., Berg, P. H., et al. (2023). Muvalaplin, an oral small molecule inhibitor of lipoprotein(a) formation: A randomized clinical trial. JAMA, 330(11), 1042–1053. https://doi.org/10.1001/jama.2023.16503
Nordestgaard, B. G., Chapman, M. J., Ray, K., Borén, J., Andreotti, F., Watts, G. F., et al. (2010). Lipoprotein(a) as a cardiovascular risk factor: Current status. European Heart Journal, 31(23), 2844–2853. https://doi.org/10.1093/eurheartj/ehq386
Nordestgaard, B. G., Tybjaerg-Hansen, A., & Lewis, B. (1992). Influx in vivo of low-density, intermediate-density, and very low-density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits: Roles of plasma concentrations, extent of aortic lesion, and lipoprotein particle size as determinants. Arteriosclerosis and Thrombosis, 12(1), 6–18. https://doi.org/10.1161/01.ATV.12.1.6
Oikonomou, E., Theofilis, P., Lampsas, S., Katsarou, O., Kalogeras, K., Marinos, G., et al. (2022). Current concepts and future applications of non-invasive functional and anatomical evaluation of coronary artery disease. Life (Basel), 12(11), 1803. https://doi.org/10.3390/life12111803
Parish, S., Hopewell, J. C., Hill, M. R., Marcovina, S., Valdes-Marquez, E., Haynes, R., et al.; HPS2-THRIVE Collaborative Group. (2018). Impact of Apolipoprotein(a) Isoform Size on Lipoprotein(a) Lowering in the HPS2-THRIVE Study. Circulation: Genomic and Precision Medicine, 11(2), e001696. https://doi.org/10.1161/CIRCGEN.117.001696
Paré, G., Çaku, A., McQueen, M., Anand, S. S., Enas, E., Clarke, R., et al. (2019). Lipoprotein(a) levels and the risk of myocardial infarction among 7 ethnic groups. Circulation, 139(11), 1472–1482. https://doi.org/10.1161/CIRCULATIONAHA.118.034311
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.
Raal, F. J., Kallend, D., Ray, K. K., Turner, T., Koenig, W., Wright, R. S., et al.; ORION-9 Investigators. (2020). Inclisiran for the treatment of heterozygous familial hypercholesterolemia. New England Journal of Medicine, 382(16), 1520–1530. https://doi.org/10.1056/NEJMoa1913805
Rand, M. L., Sangrar, W., Hancock, M. A., Taylor, D. M., Marcovina, S. M., Packham, M. A., et al. (1998). Apolipoprotein(a) enhances platelet responses to the thrombin receptor-activating peptide SFLLRN. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(9), 1393–1399. https://doi.org/10.1161/01.ATV.18.9.1393
Rath, M., Niendorf, A., Reblin, T., Dietel, M., Krebber, H. J., & Beisiegel, U. (1989). Detection and quantification of lipoprotein(a) in the arterial wall of 107 coronary bypass patients. Arteriosclerosis Thrombosis, 9(5), 579–592. https://doi.org/10.1161/01.atv.9.5.579
Ray, K. K., Wright, R. S., Kallend, D., Koenig, W., Leiter, L. A., Raal, F. J., et al.; (2020). ORION-10 and ORION-11 Investigators. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. New England Journal of Medicine, 382(16), 1507–1519. https://doi.org/10.1056/NEJMoa1912387
Riessen R, Isner J. M, Blessing E, Loushin C, Nikol S & Wight T. N. (1994) Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am J Pathol.;144(5):962–74. PMID:8178945; PMCID:PMC1887362.
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20(2). https://doi.org/10.1590/S0103-21002007000200001.
Salonen E. M., Jauhiainen M, Zardi L, Vaheri A, & Ehnholm C. (1989) Lipoprotein(a) binds to fibronectin and has serine proteinase activity capable of cleaving it. EMBO J.;8(13):4035–40. doi:10.1002/j.1460-2075.1989.tb08586.x. PMID:2531657; PMCID:PMC401578.
Samaha, F. F., McKenney, J., Bloedon, L. T., Sasiela, W. J., & Rader, D. J. (2008). Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nature Clinical Practice Cardiovascular Medicine, 5(8), 497–505. https://doi.org/10.1038/ncpcardio1250
Santos, R. D., Raal, F. J., Catapano, A. L., Witztum, J. L., Steinhagen-Thiessen, E., & Tsimikas, S. (2015). Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(3), 689–699. https://doi.org/10.1161/ATVBAHA.114.304549
Scipione, C. A., Sayegh, S. E., Romagnuolo, R., Tsimikas, S., Marcovina, S. M., Boffa, M. B., & Koschinsky, M. L. (2015). Mechanistic insights into Lp(a)-induced IL-8 expression: A role for oxidized phospholipid modification of apo(a). Journal of Lipid Research, 56(12), 2273–2285. https://doi.org/10.1194/jlr.M060210
Schmidt, K., Noureen, A., Kronenberg, F., & Utermann, G. (2016). Structure, function, and genetics of lipoprotein (a). Journal of Lipid Research, 57(8), 1339–1359. https://doi.org/10.1194/jlr.R067314
Schnitzler, J. G., Hoogeveen, R. M., Ali, L., Prange, K. H. M., Waissi, F., van Weeghel, M., et al. (2020). Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation. Circulation Research, 126(10), 1346–1359. https://doi.org/10.1161/CIRCRESAHA.119.316206
Schwartz, G. G., & Ballantyne, C. M. (2022). Existing and emerging strategies to lower Lipoprotein(a). Atherosclerosis, 349, 110–122. https://doi.org/10.1016/j.atherosclerosis.2022.04.020
Seimon, T. A., Nadolski, M. J., Liao, X., Magallon, J., Nguyen, M., Feric, N. T., et al. (2010). Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metabolism, 12(5), 467–482. https://doi.org/10.1016/j.cmet.2010.09.010
Shah, N. P., Pajidipati, N. J., McGarrah, R. W., Navar, A. M., Vemulapalli, S., Blazing, M. A., et al. (2020). Lipoprotein(a): An Update on a Marker of Residual Risk and Associated Clinical Manifestations. American Journal of Cardiology, 126, 94–102. https://doi.org/10.1016/j.amjcard.2020.03.043
Smith E. B. & Cochran S. (1990). Factors influencing the accumulation in fibrous plaques of lipid derived from low density lipoprotein. II. Preferential immobilization of lipoprotein(a) (Lp(a)). Atherosclerosis.;84(2–3):173–81. doi:10.1016/0021-9150(90)90088-z. PMID:2149268.
Tsioulos, G., Kounatidis, D., Vallianou, N. G., et al. (2024). Lipoprotein(a) and atherosclerotic cardiovascular disease: Where do we stand? International Journal of Molecular Sciences, 25(6), 3537. https://doi.org/10.3390/ijms25063537
Tsimikas, S., Gordts, P. L. S. M., Nora, C., Yeang, C., & Witztum, J. L. (2020). Statin therapy increases lipoprotein(a) levels. European Heart Journal, 41(24), 2275–2284. https://doi.org/10.1093/eurheartj/ehz310
Tsimikas, S., Karwatowska-Prokopczuk, E., Gouni-Berthold, I., Tardif, J. C., Baum, S. J., Steinhagen-Thiessen, E., et al. (2020). Lipoprotein(a) reduction in persons with cardiovascular disease. New England Journal of Medicine, 382(3), 244–255. https://doi.org/10.1056/NEJMoa1905239
Tsimikas, S. (2017). A test in context: Lipoprotein(a): Diagnosis, prognosis, controversies, and emerging therapies. Journal of the American College of Cardiology, 69(6), 692–711. https://doi.org/10.1016/j.jacc.2016.11.042
Tsimikas, S., Brilakis, E. S., Miller, E. R., McConnell, J. P., Lennon, R. J., Kornman, K. S., et al. (2005). Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. New England Journal of Medicine, 353(1), 46–57. https://doi.org/10.1056/NEJMoa043175
Tsimikas, S. (2018). Lipoprotein(a): Novel insights from genomics and molecular biology. Current Opinion in Lipidology, 29(6), 528–536. https://doi.org/10.1097/MOL.0000000000000552
van der Hoek Y. Y, Sangrar W, Côté G. P, Kastelein J. J, & Koschinsky M. L. (1994). Binding of recombinant apolipoprotein(a) to extracellular matrix proteins. Arterioscler Thromb.;14(11), 1792–8. doi:10.1161/01.atv.14.11.1792. PMID:7947605.
van Dijk, R. A., Kolodgie, F., Ravandi, A., Leibundgut, G., Hu, P. P., Prasad, A., et al. (2012). Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. Journal of Lipid Research, 53(12), 2773–2790. https://doi.org/10.1194/jlr.P030890
Viney, N. J., van Capelleveen, J. C., Geary, R. S., Xia, S., Tami, J. A., Yu, R. Z., et al. (2016). Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): Two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet, 388(10057), 2239–2253. https://doi.org/10.1016/S0140-6736(16)31492-3
Wilson, D. P., Jacobson, T. A., Jones, P. H., Koschinsky, M. L., McNeal, C. J., Nordestgaard, B. G., et al. (2019). Use of lipoprotein(a) in clinical practice: A biomarker whose time has come. Journal of Clinical Lipidology, 13(3), 374–392. https://doi.org/10.1016/j.jacl.2019.02.004
Yahya, R., Berk, K., Verhoeven, A., Bos, S., van der Zee, L., Touw, J., et al. (2019). Statin treatment increases lipoprotein(a) levels in subjects with low molecular weight apolipoprotein(a) phenotype. Atherosclerosis, 289, 201–205. https://doi.org/10.1016/j.atherosclerosis.2019.07.001
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mônica Bento Bispo; Délcio Gonçalves da Silva Júnior

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.