Lipoproteína(a): Biomarcador y factor de riesgo en aterosclerosis – de la fisiopatología a la práctica clínica
DOI:
https://doi.org/10.33448/rsd-v14i3.48379Palabras clave:
Lipoproteína(a), Aterosclerosis, Enfermedades cardiovasculares.Resumen
Introducción: La Lp(a) es una lipoproteína estructuralmente similar a la LDL, compuesta principalmente por ApoB-100 y apolipoproteína(a). Es ampliamente reconocida como un factor de riesgo para enfermedades cardiovasculares debido a su influencia en procesos ateroscleróticos, inflamatorios y trombogénicos. Objetivo: El objetivo de esta investigación es realizar una revisión bibliográfica sobre la lipoproteína(a), los mecanismos fisiopatológicos involucrados en el desarrollo de lesiones ateroscleróticas, su uso clínico actual y una visión general de las opciones terapéuticas. Método: Se realizó una revisión narrativa de la literatura utilizando las bases de datos: PubMed, Cochrane, JAMA y Scielo. Se emplearon los siguientes descriptores: “Lipoproteína(a)”, “Aterosclerosis” y “Enfermedades cardiovasculares”. Se seleccionaron 78 estudios publicados en los últimos 40 años en inglés que demostraron relevancia para el tema. Resultados y discusión: La Lp(a) se acumula en las lesiones ateroscleróticas, se une a la matriz extracelular y transporta fosfolípidos oxidados, promoviendo inflamación, disfunción endotelial e inestabilidad de las placas. Además, interfiere en la fibrinólisis y aumenta la agregación plaquetaria, favoreciendo la trombosis. Los estudios evidencian que niveles elevados de Lp(a) están asociados con un mayor riesgo de enfermedad aterosclerótica, consolidándola como un biomarcador independiente de eventos cardiovasculares. Las guías clínicas recomiendan la medición de Lp(a) al menos una vez en la vida. Conclusión: La lipoproteína(a) [Lp(a)] es reconocida como un biomarcador independiente y un factor de riesgo cardiovascular significativo, implicado en la fisiopatología de la aterosclerosis, la trombogenicidad y la inflamación vascular. Las terapias dirigidas han surgido como alternativas prometedoras; sin embargo, aún existen lagunas sobre si la reducción terapéutica de Lp(a) impacta clínicamente en la prevención de eventos cardiovasculares.
Descargas
Referencias
Allen S, Khan S, Tam S. P, Koschinsky M, Taylor P, & Yacoub M. (1998). Expression of adhesion molecules by Lp(a): a potential novel mechanism for its atherogenicity. FASEB J.;12(15), 1765–76. doi:10.1096/fasebj.12.15.1765. PMID:9837867.
Anglés-Cano E, & Rojas G. (2002). Apolipoprotein(a): structure-function relationship at the lysine-binding site and plasminogen activator cleavage site. Biol Chem.;383(1), 93–9. doi:10.1515/BC.2002.009. PMID:11928826.
Bdeir K, Cane W, Canziani G, Chaiken I, Weisel J, Koschinsky M. L, et al. (1999). Defensin promotes the binding of lipoprotein(a) to vascular matrix. Blood.; 94(6), 2007–19. PMID:10477730.
Berglund, L, & Ramakrishnan, R. (2004) Lipoproteína (a): um fator de risco cardiovascular indescritível. Trombo Arterioscler Vasc Biol ; 24:2219-2226
Bhatia, H. S., & Wilkinson, M. J. (2022). Lipoprotein(a): Evidence for role as a causal risk factor in cardiovascular disease and emerging therapies. Journal of Clinical Medicine, 11(20), 6040. https://doi.org/10.3390/jcm11206040
Bittner, V. A., Szarek, M., Aylward, P. E., Bhatt, D. L., Diaz, R., Edelberg, J. M., et al.; (2020). ODYSSEY OUTCOMES Committees and Investigators. Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome. Journal of the American College of Cardiology, 75(2), 133–144. https://doi.org/10.1016/j.jacc.2019.10.057
Boffa, M. B. (2022). Beyond fibrinolysis: The confounding role of Lp(a) in thrombosis. Atherosclerosis, 349, 72–81. https://doi.org/10.1016/j.atherosclerosis.2022.04.009
Boffa, M. B., & Koschinsky, M. L. (2019). Proprotein convertase subtilisin/kexin type 9 inhibitors and lipoprotein(a)-mediated risk of atherosclerotic cardiovascular disease: More than meets the eye? Current Opinion in Lipidology, 30(6), 428–437. https://doi.org/10.1097/MOL.0000000000000641
Boonmark N. W, Lou X. J, Yang Z. J, Schwartz K, Zhang J. L, Rubin E. M, & Lawn R. M. (1997). Modification of apolipoprotein(a) lysine binding site reduces atherosclerosis in transgenic mice. J Clin Invest.;100(3):558–64. doi:10.1172/JCI119565. PMID:9239402; PMCID:PMC508222.
Caplice, N. M., Panetta, C., Peterson, T. E., Kleppe, L. S., Mueske, C. S., Kostner, G. M., et al. (2001). Lipoprotein(a) binds and inactivates tissue factor pathway inhibitor: A novel link between lipoproteins and thrombosis. Blood, 98(10), 2980–2987. https://doi.org/10.1182/blood.v98.10.2980
Casarin, S. T. et al. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10 (5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924
Cavalcante, L. T. C. & Oliveira, A. A. S. (2020). Métodos de revisão bibliográfica nos estudos científicos. Psicol. Rev. 26(1). https://doi.org/10.5752/P.1678-9563.2020v26n1p82-100.
Cesena, F. H. Y. (2021). Very high lipoprotein(a) levels and cardiovascular risk. Revista da Sociedade de Cardiologia do Estado de São Paulo, 31(1), 52–62. https://doi.org/10.29381/0103-8559/2021310152-62
Clarke, R., Peden, J. F., Hopewell, J. C., Kyriakou, T., Goel, A., Heath, S. C., et al. (2009). Genetic variants associated with Lp(a) lipoprotein level and coronary disease. New England Journal of Medicine, 361(26), 2518–2528. https://doi.org/10.1056/NEJMoa0902604
Chemello, K., Chan, D. C., Lambert, G., & Watts, G. F. (2022). Recent advances in demystifying the metabolism of lipoprotein(a). Atherosclerosis, 349, 82–91. https://doi.org/10.1016/j.atherosclerosis.2022.04.002
Cho, T., Jung, Y., & Koschinsky, M. L. (2008). Apolipoprotein(a), through its strong lysine-binding site in KIV(10’), mediates increased endothelial cell contraction and permeability via a Rho/Rho kinase/MYPT1-dependent pathway. Journal of Biological Chemistry, 283(45), 30503–30512. https://doi.org/10.1074/jbc.M802648200
Cho, T., Romagnuolo, R., Scipione, C., Boffa, M. B., & Koschinsky, M. L. (2013). Apolipoprotein(a) stimulates nuclear translocation of β-catenin: A novel pathogenic mechanism for lipoprotein(a). Molecular Biology of the Cell, 24(3), 210–221. https://doi.org/10.1091/mbc.E12-08-0637
Diaz, N., Perez, C., Escribano, A. M., Sanz, G., Priego, J., Lafuente, C., et al. (2024). Discovery of potent small-molecule inhibitors of lipoprotein(a) formation. Nature, 629(8013), 945–950. https://doi.org/10.1038/s41586-024-07387-z
Edelstein, C., Italia, J. A., Klezovitch, O., & Scanu, A. M. (1996). Functional and metabolic differences between elastase-generated fragments of human lipoprotein(a) and apolipoprotein(a). Journal of Lipid Research, 37(8), 1786–1801. PMID: 8864963
Edelstein, C., Shapiro, S. D., Klezovitch, O., & Scanu, A. M. (1999). Macrophage metalloelastase, MMP-12, cleaves human apolipoprotein(a) in the linker region between kringles IV-4 and IV-5: potential relevance to lipoprotein(a) biology. Journal of Biological Chemistry, 274(15), 10019–10023. https://doi.org/10.1074/jbc.274.15.10019
Ehnholm C, Jauhiainen M, & Metso J. (1990). Interaction of lipoprotein(a) with fibronectin and its potential role in atherogenesis. Eur Heart J.;11(Suppl E), 190–5. doi:10.1093/eurheartj/11.suppl_e.190. PMID:2146125.
Enkhmaa B, Petersen K. S, Kris-Etherton P. M, & Berglund L. (2020) Diet and Lp(a): Does Dietary Change Modify Residual Cardiovascular Risk Conferred by Lp(a)? Nutrients.;12(7), 2024. doi:10.3390/nu12072024. PMID:32646066; PMCID:PMC7400957.
Etingin, O. R., Hajjar, D. P., Hajjar, K. A., Harpel, P. C., & Nachman, R. L. (1991). Lipoprotein(a) regulates plasminogen activator inhibitor-1 expression in endothelial cells: A potential mechanism in thrombogenesis. Journal of Biological Chemistry, 266(4), 2459–2465. PMID: 1824942
Falcone D. J, & Salisbury B. G. (1988). Fibronectin stimulates macrophage uptake of low density lipoprotein-heparin-collagen complexes. (1988) Arterioscler.;8(3),263–73. doi:10.1161/01.atv.8.3.263. PMID:3370022.
Fless, G. M., ZumMallen, M. E., & Scanu, A. M. (1986). Physicochemical properties of apolipoprotein(a) and lipoprotein(a) derived from the dissociation of human plasma lipoprotein (a). Journal of Biological Chemistry, 261(19), 8712–8718.
Frank S. L, Klisak I, Sparkes R. S, Mohandas T, Tomlinson J. E, McLean J. W, Lawn R. M, & Lusis A. J. (1988). The apolipoprotein(a) gene resides on human chromosome 6q26-27, in close proximity to the homologous gene for plasminogen. Hum Genet. Aug;79(4), 352-6. doi: 10.1007/BF00282175. PMID: 3410459.
Galvano, F., Li Volti, G., Gazzolo, D., Frigiola, A., & Romano, C. (2010). The physiopathology of lipoprotein (a). Frontiers in Bioscience, S2, 866–875. https://doi.org/10.2741/s75
Ganné, F., Vasse, M., Beaudeux, J. L., Peynet, J., François, A., Paysant, J., et al. (1999). Increased expression of u-PA and u-PAR on monocytes by LDL and Lp(a) lipoproteins—consequences for plasmin generation and monocyte adhesion. Thrombosis and Haemostasis, 81(4), 594–600. PMID: 10235446
Grundy, S. M., Stone, N. J., Bailey, A. L., Beam, C., Birtcher, K. K., Blumenthal, R. S., et al. (2019). 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology, 73(24), e285–e350. https://doi.org/10.1016/j.jacc.2018.11.002
Handhle, A., Viljoen, A., & Wierzbicki, A. S. (2021). Elevated Lipoprotein(a): Background, current insights, and future potential therapies. Vascular Health Risk Management, 17, 527–542. https://doi.org/10.2147/VHRM.S266244
Jawi M. M, Frohlich J. & Chan S. Y. (2020). Lipoprotein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipoprotein(a) Molecule. J Lipids.;2020, 3491764. doi:10.1155/2020/3491764. PMID:32099678; PMCID:PMC7016456.
Klezovitch, O., Edelstein, C., & Scanu, A. M. (2001). Stimulation of interleukin-8 production in human THP-1 macrophages by apolipoprotein(a): Evidence for a critical involvement of elements in its C-terminal domain. Journal of Biological Chemistry, 276(50), 46864–46869. https://doi.org/10.1074/jbc.M107943200
Klezovitch O, Edelstein C, Zhu L & Scanu A. M. (1998). Apolipoprotein(a) binds via its C-terminal domain to the protein core of the proteoglycan decorin. Implications for the retention of lipoprotein(a) in atherosclerotic lesions. J Biol Chem.; 273(37), 23856–65. doi:10.1074/jbc.273.37.23856. PMID:9726998.
Koschinsky, M. L., & Boffa, M. B. (2022a). Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry, and pathophysiology. Atherosclerosis, 349, 92–100. https://doi.org/10.1016/j.atherosclerosis.2022.04.001
Koschinsky, M. L., & Boffa, M. B. (2022b). Lipoprotein(a) and cardiovascular disease. Biochemical Journal, 481(19), 1277–1296. https://doi.org/10.1042/BCJ20240037
Koschinsky, M. L., & Kronenberg, F. (2022). The long journey of lipoprotein(a) from cardiovascular curiosity to therapeutic target. Atherosclerosis, 349, 1–6. https://doi.org/10.1016/j.atherosclerosis.2022.04.017
Kreuzer J, Lloyd M. B, Bok D, Fless G. M, Scanu A. M, Lusis A. J, & Haberland M. E. (1994). Lipoprotein(a) displays increased accumulation compared with low-density lipoprotein in the murine arterial wall. Chem Phys Lipids;67–68:175–90. doi:10.1016/0009-3084(94)90137-6. PMID:8187212.
Labudovic, D., Kostovska, I., Tosheska Trajkovska, K., Cekovska, S., Brezovska Kavrakova, J., & Topuzovska, S. (2019). Lipoprotein(a) – Link between Atherogenesis and Thrombosis. Prague Medical Report, 120(2–3), 39–51. https://doi.org/10.14712/23362936.2019.9
Lampsas, S., Xenou, M., Oikonomou, E., et al. (2023). Lipoprotein(a) in atherosclerotic diseases: From pathophysiology to diagnosis and treatment. Molecules, 28(3), 969. https://doi.org/10.3390/molecules28030969
Leibundgut, G., Scipione, C., Yin, H., Schneider, M., Boffa, M. B., Green, S., et al. (2013). Determinants of binding of oxidized phospholipids on apolipoprotein(a) and lipoprotein(a). Journal of Lipid Research, 54(10), 2815–2830. https://doi.org/10.1194/jlr.M040733
Liu, H., Fu, D., Luo, Y., et al. (2022). Independent association of Lp(a) with platelet reactivity in subjects without statins or antiplatelet agents. Scientific Reports, 12, 16609. https://doi.org/10.1038/s41598-022-21121-7
Mach, F., Baigent, C., Catapano, A. L., Koskinas, K. C., Casula, M., Badimon, L., et al. (2020). 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. European Heart Journal, 41(1), 111–188. https://doi.org/10.1093/eurheartj/ehz455
Maloberti, A., Fabbri, S., Colombo, V., Gualini, E., Monticelli, M., Daus, F., et al. (2022). Lipoprotein(a): Cardiovascular disease, aortic stenosis, and new therapeutic options. International Journal of Molecular Sciences, 24(1), 170. https://doi.org/10.3390/ijms24010170
Maranhão, R. C., Carvalho, P. O., Strunz, C. C., & Pileggi, F. (s.d.). (2014) Lipoproteína(a): Estrutura, metabolismo, fisiopatologia e implicações clínicas. Arquivos Brasileiros de Cardiologia, 103 (1) • Jul 2014. https://doi.org/10.5935/abc.20140101
Miles L. A, Fless G. M, Scanu A. M, Baynham P, Sebald M. T, Skocir P, et al. (1995). Interaction of Lp(a) with plasminogen binding sites on cells. Thromb Haemost. 1995;73(3), 458–65. PMID:7667829.
Moser T. L, Enghild J. J, Pizzo S. V, & Stack M. S. (1993). The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator. J Biol Chem.;268(25), 18917–23. PMID:8360181.
Moreau, M., Brocheriou, I., Petit, L., Ninio, E., Chapman, M. J., & Rouis, M. (1999). Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of atherosclerotic plaque. Circulation, 99(3), 420–426. https://doi.org/10.1161/01.CIR.99.3.420
Nicholls, S. J. (2024). Therapeutic potential of lipoprotein(a) inhibitors. Drugs, 84(6), 637–643. https://doi.org/10.1007/s40265-024-02046-z
Nicholls, S. J., Nissen, S. E., Fleming, C., Urva, S., Suico, J., Berg, P. H., et al. (2023). Muvalaplin, an oral small molecule inhibitor of lipoprotein(a) formation: A randomized clinical trial. JAMA, 330(11), 1042–1053. https://doi.org/10.1001/jama.2023.16503
Nordestgaard, B. G., Chapman, M. J., Ray, K., Borén, J., Andreotti, F., Watts, G. F., et al. (2010). Lipoprotein(a) as a cardiovascular risk factor: Current status. European Heart Journal, 31(23), 2844–2853. https://doi.org/10.1093/eurheartj/ehq386
Nordestgaard, B. G., Tybjaerg-Hansen, A., & Lewis, B. (1992). Influx in vivo of low-density, intermediate-density, and very low-density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits: Roles of plasma concentrations, extent of aortic lesion, and lipoprotein particle size as determinants. Arteriosclerosis and Thrombosis, 12(1), 6–18. https://doi.org/10.1161/01.ATV.12.1.6
Oikonomou, E., Theofilis, P., Lampsas, S., Katsarou, O., Kalogeras, K., Marinos, G., et al. (2022). Current concepts and future applications of non-invasive functional and anatomical evaluation of coronary artery disease. Life (Basel), 12(11), 1803. https://doi.org/10.3390/life12111803
Parish, S., Hopewell, J. C., Hill, M. R., Marcovina, S., Valdes-Marquez, E., Haynes, R., et al.; HPS2-THRIVE Collaborative Group. (2018). Impact of Apolipoprotein(a) Isoform Size on Lipoprotein(a) Lowering in the HPS2-THRIVE Study. Circulation: Genomic and Precision Medicine, 11(2), e001696. https://doi.org/10.1161/CIRCGEN.117.001696
Paré, G., Çaku, A., McQueen, M., Anand, S. S., Enas, E., Clarke, R., et al. (2019). Lipoprotein(a) levels and the risk of myocardial infarction among 7 ethnic groups. Circulation, 139(11), 1472–1482. https://doi.org/10.1161/CIRCULATIONAHA.118.034311
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.
Raal, F. J., Kallend, D., Ray, K. K., Turner, T., Koenig, W., Wright, R. S., et al.; ORION-9 Investigators. (2020). Inclisiran for the treatment of heterozygous familial hypercholesterolemia. New England Journal of Medicine, 382(16), 1520–1530. https://doi.org/10.1056/NEJMoa1913805
Rand, M. L., Sangrar, W., Hancock, M. A., Taylor, D. M., Marcovina, S. M., Packham, M. A., et al. (1998). Apolipoprotein(a) enhances platelet responses to the thrombin receptor-activating peptide SFLLRN. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(9), 1393–1399. https://doi.org/10.1161/01.ATV.18.9.1393
Rath, M., Niendorf, A., Reblin, T., Dietel, M., Krebber, H. J., & Beisiegel, U. (1989). Detection and quantification of lipoprotein(a) in the arterial wall of 107 coronary bypass patients. Arteriosclerosis Thrombosis, 9(5), 579–592. https://doi.org/10.1161/01.atv.9.5.579
Ray, K. K., Wright, R. S., Kallend, D., Koenig, W., Leiter, L. A., Raal, F. J., et al.; (2020). ORION-10 and ORION-11 Investigators. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. New England Journal of Medicine, 382(16), 1507–1519. https://doi.org/10.1056/NEJMoa1912387
Riessen R, Isner J. M, Blessing E, Loushin C, Nikol S & Wight T. N. (1994) Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am J Pathol.;144(5):962–74. PMID:8178945; PMCID:PMC1887362.
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20(2). https://doi.org/10.1590/S0103-21002007000200001.
Salonen E. M., Jauhiainen M, Zardi L, Vaheri A, & Ehnholm C. (1989) Lipoprotein(a) binds to fibronectin and has serine proteinase activity capable of cleaving it. EMBO J.;8(13):4035–40. doi:10.1002/j.1460-2075.1989.tb08586.x. PMID:2531657; PMCID:PMC401578.
Samaha, F. F., McKenney, J., Bloedon, L. T., Sasiela, W. J., & Rader, D. J. (2008). Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nature Clinical Practice Cardiovascular Medicine, 5(8), 497–505. https://doi.org/10.1038/ncpcardio1250
Santos, R. D., Raal, F. J., Catapano, A. L., Witztum, J. L., Steinhagen-Thiessen, E., & Tsimikas, S. (2015). Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(3), 689–699. https://doi.org/10.1161/ATVBAHA.114.304549
Scipione, C. A., Sayegh, S. E., Romagnuolo, R., Tsimikas, S., Marcovina, S. M., Boffa, M. B., & Koschinsky, M. L. (2015). Mechanistic insights into Lp(a)-induced IL-8 expression: A role for oxidized phospholipid modification of apo(a). Journal of Lipid Research, 56(12), 2273–2285. https://doi.org/10.1194/jlr.M060210
Schmidt, K., Noureen, A., Kronenberg, F., & Utermann, G. (2016). Structure, function, and genetics of lipoprotein (a). Journal of Lipid Research, 57(8), 1339–1359. https://doi.org/10.1194/jlr.R067314
Schnitzler, J. G., Hoogeveen, R. M., Ali, L., Prange, K. H. M., Waissi, F., van Weeghel, M., et al. (2020). Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation. Circulation Research, 126(10), 1346–1359. https://doi.org/10.1161/CIRCRESAHA.119.316206
Schwartz, G. G., & Ballantyne, C. M. (2022). Existing and emerging strategies to lower Lipoprotein(a). Atherosclerosis, 349, 110–122. https://doi.org/10.1016/j.atherosclerosis.2022.04.020
Seimon, T. A., Nadolski, M. J., Liao, X., Magallon, J., Nguyen, M., Feric, N. T., et al. (2010). Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metabolism, 12(5), 467–482. https://doi.org/10.1016/j.cmet.2010.09.010
Shah, N. P., Pajidipati, N. J., McGarrah, R. W., Navar, A. M., Vemulapalli, S., Blazing, M. A., et al. (2020). Lipoprotein(a): An Update on a Marker of Residual Risk and Associated Clinical Manifestations. American Journal of Cardiology, 126, 94–102. https://doi.org/10.1016/j.amjcard.2020.03.043
Smith E. B. & Cochran S. (1990). Factors influencing the accumulation in fibrous plaques of lipid derived from low density lipoprotein. II. Preferential immobilization of lipoprotein(a) (Lp(a)). Atherosclerosis.;84(2–3):173–81. doi:10.1016/0021-9150(90)90088-z. PMID:2149268.
Tsioulos, G., Kounatidis, D., Vallianou, N. G., et al. (2024). Lipoprotein(a) and atherosclerotic cardiovascular disease: Where do we stand? International Journal of Molecular Sciences, 25(6), 3537. https://doi.org/10.3390/ijms25063537
Tsimikas, S., Gordts, P. L. S. M., Nora, C., Yeang, C., & Witztum, J. L. (2020). Statin therapy increases lipoprotein(a) levels. European Heart Journal, 41(24), 2275–2284. https://doi.org/10.1093/eurheartj/ehz310
Tsimikas, S., Karwatowska-Prokopczuk, E., Gouni-Berthold, I., Tardif, J. C., Baum, S. J., Steinhagen-Thiessen, E., et al. (2020). Lipoprotein(a) reduction in persons with cardiovascular disease. New England Journal of Medicine, 382(3), 244–255. https://doi.org/10.1056/NEJMoa1905239
Tsimikas, S. (2017). A test in context: Lipoprotein(a): Diagnosis, prognosis, controversies, and emerging therapies. Journal of the American College of Cardiology, 69(6), 692–711. https://doi.org/10.1016/j.jacc.2016.11.042
Tsimikas, S., Brilakis, E. S., Miller, E. R., McConnell, J. P., Lennon, R. J., Kornman, K. S., et al. (2005). Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. New England Journal of Medicine, 353(1), 46–57. https://doi.org/10.1056/NEJMoa043175
Tsimikas, S. (2018). Lipoprotein(a): Novel insights from genomics and molecular biology. Current Opinion in Lipidology, 29(6), 528–536. https://doi.org/10.1097/MOL.0000000000000552
van der Hoek Y. Y, Sangrar W, Côté G. P, Kastelein J. J, & Koschinsky M. L. (1994). Binding of recombinant apolipoprotein(a) to extracellular matrix proteins. Arterioscler Thromb.;14(11), 1792–8. doi:10.1161/01.atv.14.11.1792. PMID:7947605.
van Dijk, R. A., Kolodgie, F., Ravandi, A., Leibundgut, G., Hu, P. P., Prasad, A., et al. (2012). Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. Journal of Lipid Research, 53(12), 2773–2790. https://doi.org/10.1194/jlr.P030890
Viney, N. J., van Capelleveen, J. C., Geary, R. S., Xia, S., Tami, J. A., Yu, R. Z., et al. (2016). Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): Two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet, 388(10057), 2239–2253. https://doi.org/10.1016/S0140-6736(16)31492-3
Wilson, D. P., Jacobson, T. A., Jones, P. H., Koschinsky, M. L., McNeal, C. J., Nordestgaard, B. G., et al. (2019). Use of lipoprotein(a) in clinical practice: A biomarker whose time has come. Journal of Clinical Lipidology, 13(3), 374–392. https://doi.org/10.1016/j.jacl.2019.02.004
Yahya, R., Berk, K., Verhoeven, A., Bos, S., van der Zee, L., Touw, J., et al. (2019). Statin treatment increases lipoprotein(a) levels in subjects with low molecular weight apolipoprotein(a) phenotype. Atherosclerosis, 289, 201–205. https://doi.org/10.1016/j.atherosclerosis.2019.07.001
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Mônica Bento Bispo; Délcio Gonçalves da Silva Júnior

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.