Aprendizado de máquina e redes neurais de visão em veículos autônomos para a população envelhecida: Um protocolo de revisão de escopo

Autores

DOI:

https://doi.org/10.33448/rsd-v13i10.47019

Palavras-chave:

Veículo Autônomo, Aprendizado de Máquina, Redes Neurais de Visão, Interação Humano-Computador, Inteligência Artificial.

Resumo

Esta revisão de escopo visa mapear sistematicamente o corpo atual da literatura sobre o papel do Aprendizado de Máquina (ML) e das Redes Neurais de Visão (VNN) no aprimoramento da usabilidade e Acessibilidade de Veículos Autônomos (VAs) para usuários idosos e deficientes. Embora a tecnologia de VA tenha avançado significativamente nos últimos anos, as soluções de como essas tecnologias podem abordar os desafios únicos enfrentados por essas populações vulneráveis ​​ainda estão em um estágio subdesenvolvido ou subdesenvolvido. Por exemplo, declínio cognitivo, limitações físicas e menor confiança em sistemas automatizados. A revisão investigará como ML e VNN contribuem para melhorar a segurança, usabilidade, acessibilidade e confiança em VAs, com foco em estudos publicados entre 2020 e 2024. Uma busca abrangente será conduzida em quatro grandes bancos de dados, que são PubMed, IEEE Xplore, Scopus e Google Scholar. O idioma de segmentação de estudos empíricos revisados ​​por pares e revisões deve ser escrito em inglês. Os dados serão extraídos usando um formulário padronizado e sintetizados por meio de uma estrutura analítica descritiva para identificar os principais temas, tendências e lacunas na literatura. As descobertas oferecerão insights valiosos sobre como as tecnologias AV podem ser ainda mais otimizadas para usuários idosos e deficientes. Elas orientarão pesquisas futuras e informarão o desenvolvimento de sistemas AV mais inclusivos, seguros e confiáveis. Portanto, elas podem promover maior mobilidade e independência para essas populações.

Referências

Alzubaidi, M. S., Shah, U., Dhia Zubaydi, H., Dolaat, K., Abd-Alrazaq, A. A., Ahmed, A., & Househ, M. (2021). The role of neural network for the detection of Parkinson’s disease: A scoping review. Healthcare, 9(6), 740. https://doi.org/10.3390/healthcare9060740

Australian Government. (2024, July 2). Older Australians, about. Australian Institute of Health and Welfare. https://www.aihw.gov.au/reports/older-people/older-australians/contents/about

Bichu, Y. M., Hansa, I., Bichu, A. Y., Premjani, P., Flores-Mir, C., & Vaid, N. R. (2021). Applications of artificial intelligence and machine learning in orthodontics: A scoping review. Progress in Orthodontics, 22(1). https://doi.org/10.1186/s40510-021-00361-9

Casali, Y., Aydin, N. Y., & Comes, T. (2022). Machine learning for spatial analyses in urban areas: A scoping review. Sustainable Cities and Society, 85, 104050. https://doi.org/10.1016/j.scs.2022.104050

Elallid, B. B., Benamar, N., Hafid, A. S., Rachidi, T., & Mrani, N. (2022). A comprehensive survey on the application of deep and reinforcement learning approaches in autonomous driving. Journal of King Saud University - Computer and Information Sciences, 34(9), 7366–7390. https://doi.org/10.1016/j.jksuci.2022.03.013

Fayyad, J., Jaradat, M. A., Gruyer, D., & Najjaran, H. (2020). Deep learning sensor fusion for autonomous vehicle perception and localization: A review. Sensors, 20(15), 4220. https://doi.org/10.3390/s20154220

Ignatious, H. A., Sayed, H.-E., & Khan, M. (2022). An overview of sensors in autonomous vehicles. Procedia Computer Science, 198, 736–741. https://doi.org/10.1016/j.procs.2021.12.315

Katalesanket. (2023, November 27). Machine learning in self-driving cars. Medium. https://medium.com/@katalesanket90/machine-learning-in-self-driving-cars-8b5d1c685d3b

Karle, P., Fent, F., Huch, S., Sauerbeck, F., & Lienkamp, M. (2023). Multi-modal sensor fusion and object tracking for autonomous racing. IEEE Transactions on Intelligent Vehicles, 8(7), 3871–3883. https://doi.org/10.1109/tiv.2023.3271624

Lajunen, T., & Sullman, M. J. (2021). Attitudes toward four levels of self-driving technology among elderly drivers. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.682973

Mozaffari, S., Al-Jarrah, O. Y., Dianati, M., Jennings, P., & Mouzakitis, A. (2022). Deep learning-based vehicle behavior prediction for autonomous driving applications: A review. IEEE Transactions on Intelligent Transportation Systems, 23(1), 33–47. https://doi.org/10.1109/tits.2020.3012034

Müller, J. M. (2019). Comparing technology acceptance for autonomous vehicles, battery electric vehicles, and car sharing—a study across Europe, China, and North America. Sustainability, 11(16), 4333. https://doi.org/10.3390/su11164333

Mohammad-Rahimi, H., Nadimi, M., Rohban, M. H., Shamsoddin, E., Lee, V. Y., & Motamedian, S. R. (2021). Machine learning and orthodontics, current trends and future opportunities: A scoping review. American Journal of Orthodontics and Dentofacial Orthopedics, 160(2). https://doi.org/10.1016/j.ajodo.2021.02.013

Pande, P. S., & Khandelwal, S. (2022). A review on deep learning approaches for object detection in self-driving cars. NeuroQuantology, 20(13), 1144–1151. https://www.neuroquantology.com/open-access/A+Review+on+Deep+Learning+approaches+for+Object+Detection+in+Self-Driving+Cars9862/? download=true

Pavel, M. I., Tan, S. Y., & Abdullah, A. (2022). Vision-based autonomous vehicle systems based on deep learning: A systematic literature review. Applied Sciences, 12(14), 6831. https://doi.org/10.3390/app12146831

Rahman, M. M., Deb, S., Strawderman, L., Burch, R., & Smith, B. (2019). How the older population perceives self-driving vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 242–257. https://doi.org/10.1016/j.trf.2019.08.002

Reid, A. E., Doucet, S., Luke, A., Azar, R., & Horsman, A. R. (2019). The impact of patient navigation: A scoping review protocol. JBI Evidence Synthesis, 17(6), 1079–1085.

Silva, N., Zhang, D., Kulvicius, T., Gail, A., Barreiros, C., Lindstaedt, S., Kraft, M., Bölte, S., Poustka, L., Nielsen-Saines, K., Wörgötter, F., Einspieler, C., & Marschik, P. B. (2021). The future of general movement assessment: The role of computer vision and machine learning – A scoping review. Research in Developmental Disabilities, 110, 103854. https://doi.org/10.1016/j.ridd.2021.103854

Singh, S., & Saini, B. S. (2021). Autonomous cars: Recent developments, challenges, and possible solutions. IOP Conference Series: Materials Science and Engineering, 1022(1), 012028. https://doi.org/10.1088/1757-899x/1022/1/012028

Sirohi, D., Kumar, N., & Rana, P. S. (2020). Convolutional neural networks for 5G-enabled intelligent transportation system: A systematic review. Computer Communications, 153, 459–498. https://doi.org/10.1016/j.comcom.2020.01.058

Smith, T., Lee, K. H., Yu, K., Armstrong, L., & Cook, D. M. (2022). Exploring issues of resilience and technology use for older people: A scoping review protocol. Research, Society and Development, 11(15), 1–6. https://doi.org/10.33448/rsd-v11i15.37773

Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. https://doi.org/10.1016/j.cogr.2023.04.001

Stewart, L. A., Clarke, M., Rovers, M., Riley, R. D., Simmonds, M., Stewart, G., & Tierney, J. F. (2015). Preferred reporting items for a systematic review and meta-analysis of individual participant data: The PRISMA-IPD statement. JAMA, 313(16), 1657–1665.

Sun, H., Jing, P., Zhao, M., Chen, Y., Zhan, F., & Shi, Y. (2020). Research on the mode choice intention of the elderly for autonomous vehicles based on the extended ecological model. Sustainability, 12(24), 10661. https://doi.org/10.3390/su122410661

Yuen, K. F., Cai, L., Qi, G., & Wang, X. (2020). Factors influencing autonomous vehicle adoption: An application of the technology acceptance model and innovation diffusion theory. Technology Analysis & Strategic Management, 33(5), 505–519. https://doi.org/10.1080/09537325.2020.1826423

Zablocki, É., Ben-Younes, H., Pérez, P., & Cord, M. (2022). Explainability of deep vision-based autonomous driving systems: Review and challenges. International Journal of Computer Vision, 130(10), 2425–2452. https://doi.org/10.1007/s11263-022-01657-x

Zakaria, N. J., Shapiai, M. I., Ghani, R. A., Yassin, M. N., Ibrahim, M. Z., & Wahid, N. (2023). Lane detection in autonomous vehicles: A systematic review. IEEE Access, 11, 3729–3765. https://doi.org/10.1109/access.2023.3234442

Downloads

Publicado

2024-10-04

Edição

Seção

Nota Prévia

Como Citar

TAN, Shengsheng. Aprendizado de máquina e redes neurais de visão em veículos autônomos para a população envelhecida: Um protocolo de revisão de escopo . Research, Society and Development, [S. l.], v. 13, n. 10, p. e01131047019, 2024. DOI: 10.33448/rsd-v13i10.47019. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/47019. Acesso em: 16 jul. 2025.