Comparative mechanical behavior of grand Morse and external hexagon systems dental implants in posterior maxillary region. A Three-Dimensional Finite Element Analysis (3D-FEA) study

Authors

DOI:

https://doi.org/10.33448/rsd-v13i10.47055

Keywords:

Finite element analysis, Dental prosthesis, implant-supported, Dental implant, Maxilla.

Abstract

O crescente uso de implantes dentários tem impulsionado a demanda por soluções protéticas inovadoras. Essas novas formas e abordagens visam aprimorar tanto o manuseio clínico quanto a qualidade do tratamento, oferecendo melhores resultados e maior eficiência no atendimento ao paciente. Entre os desenvolvimentos recentes, a conexão Morse grande se tornou popular, mas não há estudos científicos que tenham comparado seu desempenho mecânico com o dos implantes de hexágono externo ou cone Morse. O objetivo deste estudo foi avaliar comparativamente as características mecânicas de dois tipos de conexões protéticas (hexágono externo e grand Morse) na reabilitação da maxila posterior, empregando o método de elementos finitos: hexágono externo e Morse grande (4,0 mm x 8,0 mm - Hélix Neodent), ambos com coroas retidas por parafuso. Modelos virtuais foram gerados com o software CAD Rhinoceros 7® com base na forma óssea de um segmento da maxila posterior do protocolo BioCAD. Uma malha tetraédrica 3D de ordem primária foi criada para a análise, simulando cargas de 100N a um ângulo de 30º em relação ao eixo do implante. Os resultados mostraram um deslocamento maior no modelo de hexágono externo (0,1399 mm) em comparação ao modelo Morse grande (0,0208 mm). A análise de estresse revelou padrões semelhantes próximos à plataforma do implante, mas o modelo de hexágono externo exibiu maior estresse von Mises (148,4 MPa) em comparação ao modelo Morse grande (99,03 MPa), que apresentou uma melhor dispersão de estresse. O Estresse Principal Máximo foi mais elevado no modelo Morse grande. Assim, o design da conexão da plataforma do implante afeta a distribuição e a intensidade do estresse.

Downloads

Download data is not yet available.

References

Alemayehu, D.-B., & Jeng, Y.-R. (2021). Three-Dimensional Finite Element Investigation into Effects of Implant Thread Design and Loading Rate on Stress Distribution in Dental Implants and Anisotropic Bone. Materials (Basel, Switzerland), 14(22). https://doi.org/10.3390/ma14226974.

Almeida, E. O. De, & Pellizzer, E. P. (2008). Biomecânica em prótese sobre implante relacionada às inclinações das cúspides e às angulações dos implantes osseointegrados-revisão de literatura. Revista de Odontologia Da UNESP, 37(4), 321–327.

Altıparmak, N., Polat, S., & Onat, S. (2023). Finite element analysis of the biomechanical effects of titanium and Cfr-peek additively manufactured subperiosteal jaw implant (AMSJI) on maxilla. Journal of Stomatology, Oral and Maxillofacial Surgery, 124(1S), 101290. https://doi.org/10.1016/j.jormas.2022.09.011.

Bicudo, P., Reis, J., Deus, A. M., Reis, L., & Vaz, M. F. (2016). Performance evaluation of dental implants: An experimental and numerical simulation study. Theoretical and Applied Fracture Mechanics, 85, 74–83. https://doi.org/10.1016/j.tafmec.2016.08.014.

Bittencourt, A. B. B. C., de Moraes Melo Neto, C. L., Penitente, P. A., Pellizzer, E. P., Santos, D. M. Dos, & Goiato, M. C. (2021). Comparison of the Morse Cone Connection with the Internal Hexagon and External Hexagon Connections Based on Microleakage - Review. Prague Medical Report, 122(3), 181–190. https://doi.org/10.14712/23362936.2021.15.

Bordin, D., Witek, L., Fardin, V. P., Bonfante, E. A., & Coelho, P. G. (2018). Fatigue Failure of Narrow Implants with Different Implant‐Abutment Connection Designs. Journal of Prosthodontics, 27(7), 659–664. https://doi.org/10.1111/jopr.12540.

Brozović, J., Demoli, N., Farkaš, N., Sušić, M., Alar, Z., & Pandurić, D. G. (2014). Properties of axially loaded implant-abutment assemblies using digital holographic interferometry analysis. Dental Materials : Official Publication of the Academy of Dental Materials, 30(3), e17-27. https://doi.org/10.1016/j.dental.2013.12.005.

Brune, A., Stiesch, M., Eisenburger, M., & Greuling, A. (2019). The effect of different occlusal contact situations on peri-implant bone stress - A contact finite element analysis of indirect axial loading. Materials Science & Engineering. C, Materials for Biological Applications, 99, 367–373. https://doi.org/10.1016/j.msec.2019.01.104.

Buser, D., Sennerby, L., & Bruyn, H. De. (2017). Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology 2000, 73(1), 7–21. https://doi.org/10.1111/prd.12185.

CATÁLOGO DE PRODUTOS NEODENT ® 2 0 2 3. (n.d.).

Cervino, G., Fiorillo, L., Arzukanyan, A. V, Spagnuolo, G., Campagna, P., & Cicciù, M. (2020). Application of bioengineering devices for stress evaluation in dentistry: the last 10 years FEM parametric analysis of outcomes and current trends. Minerva Stomatologica, 69(1). https://doi.org/10.23736/S0026-4970.19.04263-8.

Gil-Marques, B., Pallarés-Sabater, A., Brizuela-Velasco, A., Lasheras, F. S., Lázaro-Calvo, P., Gómez-Adrián, M. D., & Larrazábal-Morón, C. (2022). A Biomechanical Analysis of the Influence of the Morfology of the Bone Blocks Grafts on the Transfer of Tension or Load to the Soft Tissue by Means of the Finite Elements Method. Materials, 15(24), 9039. https://doi.org/10.3390/ma15249039.

Guessasma, S., Nouri, H., & Belhabib, S. (2022). Digital Image Correlation and Finite Element Computation to Reveal Mechanical Anisotropy in 3D Printing of Polymers. Materials (Basel, Switzerland), 15(23). https://doi.org/10.3390/ma15238382.

Gupta, Y., Iyer, R., Dommeti, V. K., Nutu, E., Rana, M., Merdji, A., Biswas, J. K., & Roy, S. (2021). Design of dental implant using design of experiment and topology optimization: A finite element analysis study. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 235(2), 157–166. https://doi.org/10.1177/0954411920967146.

Jafari, B., Katoozian, H. R., Tahani, M., & Ashjaee, N. (2022). A comparative study of bone remodeling around hydroxyapatite-coated and novel radial functionally graded dental implants using finite element simulation. Medical Engineering & Physics, 102, 103775. https://doi.org/10.1016/j.medengphy.2022.103775.

Khorshidparast, S., Akhlaghi, P., Rouhi, G., & Barikani, H. (2023). Measurement of bone damage caused by quasi-static compressive loading-unloading to explore dental implants stability: Simultaneous use of in-vitro tests, μ-CT images, and digital volume correlation. Journal of the Mechanical Behavior of Biomedical Materials, 138, 105566. https://doi.org/10.1016/j.jmbbm.2022.105566.

Lemos, C. A. A., Verri, F. R., Noritomi, P. Y., Kemmoku, D. T., de Souza Batista, V. E., Cruz, R. S., de Luna Gomes, J. M., & Pellizzer, E. P. (2021). Effect of bone quality and bone loss level around internal and external connection implants: A finite element analysis study. The Journal of Prosthetic Dentistry, 125(1), 137.e1-137.e10. https://doi.org/10.1016/j.prosdent.2020.06.029.

Lemos, C. A. A., Verri, F. R., Santiago, J. F., de Faria Almeida, D. A., de Souza Batista, V. E., Noritomi, P. Y., & Pellizzer, D. P. (2018). Retention System and Splinting on Morse Taper Implants in the Posterior Maxilla by 3D Finite Element Analysis. Brazilian Dental Journal, 29(1), 30–35. https://doi.org/10.1590/0103-6440201801492.

Liang, R., Guo, W., Qiao, X., Wen, H., Yu, M., Tang, W., Liu, L., Wei, Y., & Tian, W. (2015). Biomechanical analysis and comparison of 12 dental implant systems using 3D finite element study. Computer Methods in Biomechanics and Biomedical Engineering, 18(12), 1340–1348. https://doi.org/10.1080/10255842.2014.903930.

Liu, B., Xu, W., Chen, M., Chen, D., Sun, G., Zhang, C., Pan, Y., Lu, J., Guo, E., & Lu, X. (2022). Structural Design and Finite Element Simulation Analysis of Grade 3 Graded Porous Titanium Implant. International Journal of Molecular Sciences, 23(17). https://doi.org/10.3390/ijms231710090.

Macedo, J. P., Pereira, J., Faria, J., Pereira, C. A., Alves, J. L., Henriques, B., Souza, J. C. M., & López-López, J. (2017). Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implants. Journal of the Mechanical Behavior of Biomedical Materials, 71, 441–447. https://doi.org/10.1016/j.jmbbm.2017.03.011.

Menacho-Mendoza, E., Cedamanos-Cuenca, R., & Díaz-Suyo, A. (2022). Stress analysis and factor of safety in three dental implant systems by finite element analysis. The Saudi Dental Journal, 34(7), 579–584. https://doi.org/10.1016/j.sdentj.2022.08.006.

Moreira, G. M., de Mattos Peres, G., & dos Reis, T. A. (2022). Diferentes sistemas de implantes dentários: uma revisão descritiva da literatura. Research, Society and Development, 11(8), e16311830603. https://doi.org/10.33448/rsd-v11i8.30603.

Nesbitt, D. Q., Burruel, D. E., Henderson, B. S., & Lujan, T. J. (2023). Finite element modeling of meniscal tears using continuum damage mechanics and digital image correlation. Scientific Reports, 13(1), 4039. https://doi.org/10.1038/s41598-023-29111-z.

Odo, C. H., Pimentel, M. J., Consani, R. L. X., Mesquita, M. F., & Nóbilo, M. A. A. (2015). Stress on external hexagon and Morse taper implants submitted to immediate loading. Journal of Oral Biology and Craniofacial Research, 5(3), 173–179. https://doi.org/10.1016/j.jobcr.2015.07.002.

Patil, S. M., Deshpande, A. S., Bhalerao, R. R., Metkari, S. B., & Patil, P. M. (2019). A three-dimensional finite element analysis of the influence of varying implant crest module designs on the stress distribution to the bone. Dental Research Journal, 16(3), 145–152.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.

Roy, S., Dey, S., Khutia, N., Chowdhury, A. R., & Datta, S. (2018). Design of patient specific dental implant using FE analysis and computational intelligence techniques. Applied Soft Computing, 65, 272–279. https://doi.org/10.1016/j.asoc.2018.01.025.

Sciasci, P., Casalle, N., & Vaz, L. G. (2018). Evaluation of primary stability in modified implants: Analysis by resonance frequency and insertion torque. Clinical Implant Dentistry and Related Research, 20(3), 274–279. https://doi.org/10.1111/cid.12574.

Shamami, D. Z., Karimi, A., Beigzadeh, B., Derakhshan, S., & Navidbakhsh, M. (2014). A Three-Dimensional Finite Element Study to Characterize the Influence of Load Direction on Stress Distribution in Bone Around Dental Implant. Journal of Biomaterials and Tissue Engineering, 4(9), 693–699. https://doi.org/10.1166/jbt.2014.1230.

Silva, G. A. F., Faot, F., da Rosa Possebon, A. P., da Silva, W. J., & Cury, A. A. D. B. (2021). Effect of macrogeometry and bone type on insertion torque, primary stability, surface topography damage and titanium release of dental implants during surgical insertion into artificial bone. Journal of the Mechanical Behavior of Biomedical Materials, 119, 104515. https://doi.org/10.1016/j.jmbbm.2021.104515.

Tenenbaum, H., Schaaf, J.-F., & Cuisinier, F. J. G. (2003). Histological Analysis of the Ankylos Peri-implant Soft Tissues in a Dog Model. Implant Dentistry, 12(3), 259–265. https://doi.org/10.1097/01.ID.0000075720.78252.54.

Valera-Jiménez, J. F., Burgueño-Barris, G., Gómez-González, S., López-López, J., Valmaseda-Castellón, E., & Fernández-Aguado, E. (2020). Finite element analysis of narrow dental implants. Dental Materials : Official Publication of the Academy of Dental Materials, 36(7), 927–935. https://doi.org/10.1016/j.dental.2020.04.013.

Vinhas, A. S., Aroso, C., Salazar, F., López-Jarana, P., Ríos-Santos, J. V., & Herrero-Climent, M. (2020). Review of the Mechanical Behavior of Different Implant-Abutment Connections. International Journal of Environmental Research and Public Health, 17(22). https://doi.org/10.3390/ijerph17228685.

Wu, H., Shi, Q., Huang, Y., Chang, P., Huo, N., Jiang, Y., & Wang, J. (2021). Failure Risk of Short Dental Implants Under Immediate Loading: A Meta-Analysis. Journal of Prosthodontics : Official Journal of the American College of Prosthodontists, 30(7), 569–580. https://doi.org/10.1111/jopr.13376.

Wu, T., Fan, H., Ma, R., Chen, H., Li, Z., & Yu, H. (2017). Effect of lubricant on the reliability of dental implant abutment screw joint: An in vitro laboratory and three-dimension finite element analysis. Materials Science & Engineering. C, Materials for Biological Applications, 75, 297–304. https://doi.org/10.1016/j.msec.2016.11.041.

Wu, Y.-L., Tsai, M.-H., Chen, H.-S., Lin, C.-P., & Wu, A. Y.-J. (2022). Effect of Marginal Bone Integrity and Aftermarket Abutment Screws on Dental Implant Systems-A Preliminary Study with Finite Element Method. Materials (Basel, Switzerland), 15(17). https://doi.org/10.3390/ma15175952.

Yang, B., Irastorza-Landa, A., Heuberger, P., & Ploeg, H.-L. (2020). Effect of insertion factors on dental implant insertion torque/energy-experimental results. Journal of the Mechanical Behavior of Biomedical Materials, 112, 103995. https://doi.org/10.1016/j.jmbbm.2020.103995.

Zhang, W.-T., Cheng, K.-J., Liu, Y.-F., Wang, R., Chen, Y.-F., Ding, Y., Yang, F., & Wang, L.-H. (2022). Effect of the prosthetic index on stress distribution in Morse taper connection implant system and peri-implant bone: a 3D finite element analysis. BMC Oral Health, 22(1), 431. https://doi.org/10.1186/s12903-022-02465-y.

Downloads

Published

2024-10-13

Issue

Section

Health Sciences

How to Cite

Comparative mechanical behavior of grand Morse and external hexagon systems dental implants in posterior maxillary region. A Three-Dimensional Finite Element Analysis (3D-FEA) study. Research, Society and Development, [S. l.], v. 13, n. 10, p. e53131047055, 2024. DOI: 10.33448/rsd-v13i10.47055. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/47055. Acesso em: 28 jun. 2025.