Comportamento mecânico comparativo de implantes dentários dos sistemas grand Morse e hexágono externo na região posterior do maxilar. Um estudo de análise de elementos finitos tridimensionais (3D-FEA)

Autores

DOI:

https://doi.org/10.33448/rsd-v13i10.47055

Palavras-chave:

Análise por elementos finitos, Prótese dentária fixada por implante, Implante dentário, Maxila.

Resumo

The increasing use of dental implants has boosted demand for innovative prosthetic solutions. These new forms and approaches aim to improve clinical handling and treatment quality, offering better results and greater efficiency in patient care. Among recent developments, the grand Morse connection has become popular, yet no scientific studies have compared its mechanical performance with external hexagon implants or Morse cone implants. The objective of this study was to comparatively assess the mechanical characteristics of two types of prosthetic connections (external hexagon and grand Morse) in posterior maxilla rehabilitation, employing the finite element method: external hexagon and grand Morse (4.0 mm x 8.0 mm - Hélix Neodent), both with screw-retained crowns. Virtual models were generated with CAD software Rhinoceros 7® based on a posterior maxillary segment’s bone shape from the BioCAD protocol. A primary-order tetrahedral 3D mesh was created for analysis, simulating 100N loads at a 30º angle to the implant axis. Results showed greater shifting in the external hexagon model (0.1399 mm) compared to the grand Morse model (0.0208 mm). Stress analysis revealed similar patterns near the implant platform, but the external hexagon model exhibited higher von Mises stress (148.4 MPa) compared to the grand Morse model (99.03 MPa), which had better stress dispersion. Maximum Principal Stress was higher for the grand Morse model. Thus, the implant platform connection design affects stress distribution and intensity.

Referências

Alemayehu, D.-B., & Jeng, Y.-R. (2021). Three-Dimensional Finite Element Investigation into Effects of Implant Thread Design and Loading Rate on Stress Distribution in Dental Implants and Anisotropic Bone. Materials (Basel, Switzerland), 14(22). https://doi.org/10.3390/ma14226974.

Almeida, E. O. De, & Pellizzer, E. P. (2008). Biomecânica em prótese sobre implante relacionada às inclinações das cúspides e às angulações dos implantes osseointegrados-revisão de literatura. Revista de Odontologia Da UNESP, 37(4), 321–327.

Altıparmak, N., Polat, S., & Onat, S. (2023). Finite element analysis of the biomechanical effects of titanium and Cfr-peek additively manufactured subperiosteal jaw implant (AMSJI) on maxilla. Journal of Stomatology, Oral and Maxillofacial Surgery, 124(1S), 101290. https://doi.org/10.1016/j.jormas.2022.09.011.

Bicudo, P., Reis, J., Deus, A. M., Reis, L., & Vaz, M. F. (2016). Performance evaluation of dental implants: An experimental and numerical simulation study. Theoretical and Applied Fracture Mechanics, 85, 74–83. https://doi.org/10.1016/j.tafmec.2016.08.014.

Bittencourt, A. B. B. C., de Moraes Melo Neto, C. L., Penitente, P. A., Pellizzer, E. P., Santos, D. M. Dos, & Goiato, M. C. (2021). Comparison of the Morse Cone Connection with the Internal Hexagon and External Hexagon Connections Based on Microleakage - Review. Prague Medical Report, 122(3), 181–190. https://doi.org/10.14712/23362936.2021.15.

Bordin, D., Witek, L., Fardin, V. P., Bonfante, E. A., & Coelho, P. G. (2018). Fatigue Failure of Narrow Implants with Different Implant‐Abutment Connection Designs. Journal of Prosthodontics, 27(7), 659–664. https://doi.org/10.1111/jopr.12540.

Brozović, J., Demoli, N., Farkaš, N., Sušić, M., Alar, Z., & Pandurić, D. G. (2014). Properties of axially loaded implant-abutment assemblies using digital holographic interferometry analysis. Dental Materials : Official Publication of the Academy of Dental Materials, 30(3), e17-27. https://doi.org/10.1016/j.dental.2013.12.005.

Brune, A., Stiesch, M., Eisenburger, M., & Greuling, A. (2019). The effect of different occlusal contact situations on peri-implant bone stress - A contact finite element analysis of indirect axial loading. Materials Science & Engineering. C, Materials for Biological Applications, 99, 367–373. https://doi.org/10.1016/j.msec.2019.01.104.

Buser, D., Sennerby, L., & Bruyn, H. De. (2017). Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology 2000, 73(1), 7–21. https://doi.org/10.1111/prd.12185.

CATÁLOGO DE PRODUTOS NEODENT ® 2 0 2 3. (n.d.).

Cervino, G., Fiorillo, L., Arzukanyan, A. V, Spagnuolo, G., Campagna, P., & Cicciù, M. (2020). Application of bioengineering devices for stress evaluation in dentistry: the last 10 years FEM parametric analysis of outcomes and current trends. Minerva Stomatologica, 69(1). https://doi.org/10.23736/S0026-4970.19.04263-8.

Gil-Marques, B., Pallarés-Sabater, A., Brizuela-Velasco, A., Lasheras, F. S., Lázaro-Calvo, P., Gómez-Adrián, M. D., & Larrazábal-Morón, C. (2022). A Biomechanical Analysis of the Influence of the Morfology of the Bone Blocks Grafts on the Transfer of Tension or Load to the Soft Tissue by Means of the Finite Elements Method. Materials, 15(24), 9039. https://doi.org/10.3390/ma15249039.

Guessasma, S., Nouri, H., & Belhabib, S. (2022). Digital Image Correlation and Finite Element Computation to Reveal Mechanical Anisotropy in 3D Printing of Polymers. Materials (Basel, Switzerland), 15(23). https://doi.org/10.3390/ma15238382.

Gupta, Y., Iyer, R., Dommeti, V. K., Nutu, E., Rana, M., Merdji, A., Biswas, J. K., & Roy, S. (2021). Design of dental implant using design of experiment and topology optimization: A finite element analysis study. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 235(2), 157–166. https://doi.org/10.1177/0954411920967146.

Jafari, B., Katoozian, H. R., Tahani, M., & Ashjaee, N. (2022). A comparative study of bone remodeling around hydroxyapatite-coated and novel radial functionally graded dental implants using finite element simulation. Medical Engineering & Physics, 102, 103775. https://doi.org/10.1016/j.medengphy.2022.103775.

Khorshidparast, S., Akhlaghi, P., Rouhi, G., & Barikani, H. (2023). Measurement of bone damage caused by quasi-static compressive loading-unloading to explore dental implants stability: Simultaneous use of in-vitro tests, μ-CT images, and digital volume correlation. Journal of the Mechanical Behavior of Biomedical Materials, 138, 105566. https://doi.org/10.1016/j.jmbbm.2022.105566.

Lemos, C. A. A., Verri, F. R., Noritomi, P. Y., Kemmoku, D. T., de Souza Batista, V. E., Cruz, R. S., de Luna Gomes, J. M., & Pellizzer, E. P. (2021). Effect of bone quality and bone loss level around internal and external connection implants: A finite element analysis study. The Journal of Prosthetic Dentistry, 125(1), 137.e1-137.e10. https://doi.org/10.1016/j.prosdent.2020.06.029.

Lemos, C. A. A., Verri, F. R., Santiago, J. F., de Faria Almeida, D. A., de Souza Batista, V. E., Noritomi, P. Y., & Pellizzer, D. P. (2018). Retention System and Splinting on Morse Taper Implants in the Posterior Maxilla by 3D Finite Element Analysis. Brazilian Dental Journal, 29(1), 30–35. https://doi.org/10.1590/0103-6440201801492.

Liang, R., Guo, W., Qiao, X., Wen, H., Yu, M., Tang, W., Liu, L., Wei, Y., & Tian, W. (2015). Biomechanical analysis and comparison of 12 dental implant systems using 3D finite element study. Computer Methods in Biomechanics and Biomedical Engineering, 18(12), 1340–1348. https://doi.org/10.1080/10255842.2014.903930.

Liu, B., Xu, W., Chen, M., Chen, D., Sun, G., Zhang, C., Pan, Y., Lu, J., Guo, E., & Lu, X. (2022). Structural Design and Finite Element Simulation Analysis of Grade 3 Graded Porous Titanium Implant. International Journal of Molecular Sciences, 23(17). https://doi.org/10.3390/ijms231710090.

Macedo, J. P., Pereira, J., Faria, J., Pereira, C. A., Alves, J. L., Henriques, B., Souza, J. C. M., & López-López, J. (2017). Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implants. Journal of the Mechanical Behavior of Biomedical Materials, 71, 441–447. https://doi.org/10.1016/j.jmbbm.2017.03.011.

Menacho-Mendoza, E., Cedamanos-Cuenca, R., & Díaz-Suyo, A. (2022). Stress analysis and factor of safety in three dental implant systems by finite element analysis. The Saudi Dental Journal, 34(7), 579–584. https://doi.org/10.1016/j.sdentj.2022.08.006.

Moreira, G. M., de Mattos Peres, G., & dos Reis, T. A. (2022). Diferentes sistemas de implantes dentários: uma revisão descritiva da literatura. Research, Society and Development, 11(8), e16311830603. https://doi.org/10.33448/rsd-v11i8.30603.

Nesbitt, D. Q., Burruel, D. E., Henderson, B. S., & Lujan, T. J. (2023). Finite element modeling of meniscal tears using continuum damage mechanics and digital image correlation. Scientific Reports, 13(1), 4039. https://doi.org/10.1038/s41598-023-29111-z.

Odo, C. H., Pimentel, M. J., Consani, R. L. X., Mesquita, M. F., & Nóbilo, M. A. A. (2015). Stress on external hexagon and Morse taper implants submitted to immediate loading. Journal of Oral Biology and Craniofacial Research, 5(3), 173–179. https://doi.org/10.1016/j.jobcr.2015.07.002.

Patil, S. M., Deshpande, A. S., Bhalerao, R. R., Metkari, S. B., & Patil, P. M. (2019). A three-dimensional finite element analysis of the influence of varying implant crest module designs on the stress distribution to the bone. Dental Research Journal, 16(3), 145–152.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.

Roy, S., Dey, S., Khutia, N., Chowdhury, A. R., & Datta, S. (2018). Design of patient specific dental implant using FE analysis and computational intelligence techniques. Applied Soft Computing, 65, 272–279. https://doi.org/10.1016/j.asoc.2018.01.025.

Sciasci, P., Casalle, N., & Vaz, L. G. (2018). Evaluation of primary stability in modified implants: Analysis by resonance frequency and insertion torque. Clinical Implant Dentistry and Related Research, 20(3), 274–279. https://doi.org/10.1111/cid.12574.

Shamami, D. Z., Karimi, A., Beigzadeh, B., Derakhshan, S., & Navidbakhsh, M. (2014). A Three-Dimensional Finite Element Study to Characterize the Influence of Load Direction on Stress Distribution in Bone Around Dental Implant. Journal of Biomaterials and Tissue Engineering, 4(9), 693–699. https://doi.org/10.1166/jbt.2014.1230.

Silva, G. A. F., Faot, F., da Rosa Possebon, A. P., da Silva, W. J., & Cury, A. A. D. B. (2021). Effect of macrogeometry and bone type on insertion torque, primary stability, surface topography damage and titanium release of dental implants during surgical insertion into artificial bone. Journal of the Mechanical Behavior of Biomedical Materials, 119, 104515. https://doi.org/10.1016/j.jmbbm.2021.104515.

Tenenbaum, H., Schaaf, J.-F., & Cuisinier, F. J. G. (2003). Histological Analysis of the Ankylos Peri-implant Soft Tissues in a Dog Model. Implant Dentistry, 12(3), 259–265. https://doi.org/10.1097/01.ID.0000075720.78252.54.

Valera-Jiménez, J. F., Burgueño-Barris, G., Gómez-González, S., López-López, J., Valmaseda-Castellón, E., & Fernández-Aguado, E. (2020). Finite element analysis of narrow dental implants. Dental Materials : Official Publication of the Academy of Dental Materials, 36(7), 927–935. https://doi.org/10.1016/j.dental.2020.04.013.

Vinhas, A. S., Aroso, C., Salazar, F., López-Jarana, P., Ríos-Santos, J. V., & Herrero-Climent, M. (2020). Review of the Mechanical Behavior of Different Implant-Abutment Connections. International Journal of Environmental Research and Public Health, 17(22). https://doi.org/10.3390/ijerph17228685.

Wu, H., Shi, Q., Huang, Y., Chang, P., Huo, N., Jiang, Y., & Wang, J. (2021). Failure Risk of Short Dental Implants Under Immediate Loading: A Meta-Analysis. Journal of Prosthodontics : Official Journal of the American College of Prosthodontists, 30(7), 569–580. https://doi.org/10.1111/jopr.13376.

Wu, T., Fan, H., Ma, R., Chen, H., Li, Z., & Yu, H. (2017). Effect of lubricant on the reliability of dental implant abutment screw joint: An in vitro laboratory and three-dimension finite element analysis. Materials Science & Engineering. C, Materials for Biological Applications, 75, 297–304. https://doi.org/10.1016/j.msec.2016.11.041.

Wu, Y.-L., Tsai, M.-H., Chen, H.-S., Lin, C.-P., & Wu, A. Y.-J. (2022). Effect of Marginal Bone Integrity and Aftermarket Abutment Screws on Dental Implant Systems-A Preliminary Study with Finite Element Method. Materials (Basel, Switzerland), 15(17). https://doi.org/10.3390/ma15175952.

Yang, B., Irastorza-Landa, A., Heuberger, P., & Ploeg, H.-L. (2020). Effect of insertion factors on dental implant insertion torque/energy-experimental results. Journal of the Mechanical Behavior of Biomedical Materials, 112, 103995. https://doi.org/10.1016/j.jmbbm.2020.103995.

Zhang, W.-T., Cheng, K.-J., Liu, Y.-F., Wang, R., Chen, Y.-F., Ding, Y., Yang, F., & Wang, L.-H. (2022). Effect of the prosthetic index on stress distribution in Morse taper connection implant system and peri-implant bone: a 3D finite element analysis. BMC Oral Health, 22(1), 431. https://doi.org/10.1186/s12903-022-02465-y.

Downloads

Publicado

2024-10-13

Edição

Seção

Ciências da Saúde

Como Citar

CASALLE, Nicole; GALVANI, Lucas David; VAZ, Mário Augusto Pires; MACHADO, Leonardo Mendes Ribeiro; NORITOMI, Pedro Yoshito; VAZ, Luís Geraldo. Comportamento mecânico comparativo de implantes dentários dos sistemas grand Morse e hexágono externo na região posterior do maxilar. Um estudo de análise de elementos finitos tridimensionais (3D-FEA). Research, Society and Development, [S. l.], v. 13, n. 10, p. e53131047055, 2024. DOI: 10.33448/rsd-v13i10.47055. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/47055. Acesso em: 16 jul. 2025.