Characterization and in vivo biological performance of collagen-like from marine sponges: A review
DOI:
https://doi.org/10.33448/rsd-v14i3.48410Keywords:
Collagen, Bioactive Compounds, Marine Sponges, Spongin.Abstract
The use of collagen-based biomaterials in tissue engineering has surged in recent decades due to collagen's advantages, including biocompatibility, controlled biodegradation, and support for cell adhesion and differentiation. Traditional collagen sources, often from bovine or porcine origins, pose challenges such as zoonotic risks, immunogenic reactions, and ethical concerns. To address these limitations, researchers are exploring innovative collagen sources, such as marine sponges. Collagen from marine sponges, known as spongin (SPG) or spongin-like collagen (SC), exhibits biocompatibility and is considered a natural component for tissue regeneration, serving as a cell-matrix adhesion framework. Our group has conducted experiments over several years to extract SPG from sponges, assess its biocompatibility and cytotoxicity, as well as its in vitro and in vivo biological effects. This research aims to review the data obtained from our research on characterization and in vivo biological performance of collagen-like from marine sponges. Furthermore, combining SPG with ceramics like hydroxyapatite and bioactive glasses has demonstrated beneficial biological properties. Despite ethical and regulatory challenges, marine sponge collagen shows promise as a natural biomaterial that could improve patients' quality of life, particularly in bone injury treatments. This review highlights the innovative use of marine sponges and their collagen-based components in tissue engineering, emphasizing their potential as a promising alternative for bone injury treatment. Additionally, it underscores the need for further research to fully harness this natural biotechnological resource.
Downloads
References
Ali, S. S., & Dubey, V. K. (2010). Exploiting the Potential of Collagen as a Natural Biomaterial in Drug Delivery Studies on Protein Folding and Misfolding-effect of selected biomolecules View project microbial diversity of Hot Springs of Sikkim India View project. In Article in Journal of Proteins and Proteomics. https://www.researchgate.net/publication/256534577
Araujo, T. A. T., Almeida, M. C., Avanzi, I., Parisi, J., Simon Sales, A. F., Na, Y., & Renno, A. (2021). Collagen membranes for skin wound repair: A systematic review. Journal of Biomaterials Applications, 36(1), 95–112. https://doi.org/10.1177/0885328220980278
Araújo, T. A. T., de Souza, A., Santana, A. F., Braga, A. R. C., Custódio, M. R., Simões, F. R., Araújo, G. M., Miranda, A., Alves, F., Granito, R. N., Yu, N., & Renno, A. C. M. (2021). Comparison of Different Methods for Spongin-like Collagen Extraction from Marine Sponges (Chondrilla caribensis and Aplysina fulva): Physicochemical Properties and In vitro Biological Analysis. Membranes, 11(7), 522. https://doi.org/10.3390/membranes11070522
Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annual Review of Chemical and Biomolecular Engineering, 2(1), 403–430. https://doi.org/10.1146/annurev-chembioeng-061010-114257
Chilakamarthi, U., Kandhadi, J., Gunda, S., Thatipalli, A. R., Kumar Jerald, M., Lingamallu, G., Reddy, R. C., Chaudhuri, A., & Pande, G. (2014). Synthesis and functional characterization of a fluorescent peptide probe for non invasive imaging of collagen in live tissues. Experimental Cell Research, 327(1), 91–101. https://doi.org/10.1016/j.yexcr.2014.05.005
Cruz, M. A., Fernandes, K. R., Parisi, J. R., Vale, G. C. A., Junior, S. R. A., Freitas, F. R., Sales, A. F. S., Fortulan, C. A., Peitl, O., Zanotto, E., Granito, R. N., Ribeiro, A. M., & Renno, A. C. M. (2020). Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects. Journal of Bone and Mineral Metabolism, 38(5), 639–647. https://doi.org/10.1007/s00774-020-01102-4
Davison-Kotler, E., Marshall, W. S., & García-Gareta, E. (2019). Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering, 6(3), 56. https://doi.org/10.3390/bioengineering6030056
Fernandes, A. P., Junqueira, M. de A., Marques, N. C. T., Machado, M. A. A. M., Santos, C. F., Oliveira, T. M., & Sakai, V. T. (2016). Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. Journal of Applied Oral Science, 24(4), 332–337. https://doi.org/10.1590/1678-775720150275
Fernandes, K. R., Parisi, J. R., Cruz, M. de A., Gabbai-Armelin, P. R., Araújo, T. A. T. de, Santana, A. de F., Avanzi, I. R., Silva-Freitas, F. R., Ribeiro, A. M., Vale, G. C. A. do, Fortulan, C. A., Granito, R. N., & Renno, A. C. M. (2021). Characterization and Biological Performance of Marine Sponge Collagen. Brazilian Archives of Biology and Technology, 64. https://doi.org/10.1590/1678-4324-2021200592
Fernandes, K. R., Parisi, J. R., Magri, A. M. P., Kido, H. W., Gabbai-Armelin, P. R., Fortulan, C. A., Zanotto, E. D., Peitl, O., Granito, R. N., & Renno, A. C. M. (2019). Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study. Journal of Materials Science: Materials in Medicine, 30(6), 64. https://doi.org/10.1007/s10856-019-6266-2
Gil, A. C. (2017). Como elaborar projetos de pesquisa. (6ed.). Editora Atlas.
Freitas, L. F., & Hamblin, M. R. (2016). Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 348–364. https://doi.org/10.1109/JSTQE.2016.2561201
Granito, R. N., Ribeiro, D. A., Rennó, A. C. M., Ravagnani, C., Bossini, P. S., Peitl-Filho, O., Zanotto, E. D., Parizotto, N. A., & Oishi, J. (2009). Effects of biosilicate and bioglass 45S5 on tibial bone consolidation on rats: a biomechanical and a histological study. Journal of Materials Science: Materials in Medicine, 20(12), 2521–2526. https://doi.org/10.1007/s10856-009-3824-z
Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 4(3), 337–361. https://doi.org/10.3934/BIOPHY.2017.3.337
Hernández‐Rangel, A., & Martin‐Martinez, E. S. (2021). Collagen based electrospun materials for skin wounds treatment. Journal of Biomedical Materials Research Part A, 109(9), 1751–1764. https://doi.org/10.1002/jbm.a.37154
Ho-Shui-Ling, A., Bolander, J., Rustom, L. E., Johnson, A. W., Luyten, F. P., & Picart, C. (2018). Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 180, 143–162. https://doi.org/10.1016/j.biomaterials.2018.07.017
Khadra, M., Lyngstadaas, S. P., Haanæs, H. R., & Mustafa, K. (2005). Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials, 26(17), 3503–3509. https://doi.org/10.1016/j.biomaterials.2004.09.033
Li, Y., Liu, Y., Li, R., Bai, H., Zhu, Z., Zhu, L., Zhu, C., Che, Z., Liu, H., Wang, J., & Huang, L. (2021). Collagen-based biomaterials for bone tissue engineering. Materials & Design, 210, 110049. https://doi.org/10.1016/j.matdes.2021.110049
Lima, F. M., Bjordal, J. M., Albertini, R., Santos, F. V., & Aimbire, F. (2010). Low-level laser therapy (LLLT) attenuates RhoA mRNA expression in the rat bronchi smooth muscle exposed to tumor necrosis factor-α. Lasers in Medical Science, 25(5), 661–668. https://doi.org/10.1007/s10103-010-0766-0~
Lin, Z., Solomon, K. L., Zhang, X., Pavlos, N. J., Abel, T., Willers, C., Dai, K., Xu, J., Zheng, Q., & Zheng, M. (2011). In vitro Evaluation of Natural Marine Sponge Collagen as a Scaffold for Bone Tissue Engineering. International Journal of Biological Sciences, 7(7), 968–977. https://doi.org/10.7150/ijbs.7.968
Liu, S., Lau, C.-S., Liang, K., Wen, F., & Teoh, S. H. (2022). Marine collagen scaffolds in tissue engineering. Current Opinion in Biotechnology, 74, 92–103. https://doi.org/10.1016/j.copbio.2021.10.011
Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A., & Laurencin, C. T. (2020). Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 226, 119536. https://doi.org/10.1016/j.biomaterials.2019.119536
Panagiotis Berillis. (2015). Marine Collagen: Extraction and Applications. www.smgebooks.com
Pang, K.-M., Lee, J.-K., Seo, Y.-K., Kim, S.-M., Kim, M.-J., & Lee, J.-H. (2015). Biologic properties of nano-hydroxyapatite: An in vivo study of calvarial defects, ectopic bone formation and bone implantation. Bio-Medical Materials and Engineering, 25(1), 25–38. https://doi.org/10.3233/BME-141244
Parisi, C., Salvatore, L., Veschini, L., Serra, M. P., Hobbs, C., Madaghiele, M., Sannino, A., & Di Silvio, L. (2020). Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. Journal of Tissue Engineering, 11, 204173141989606. https://doi.org/10.1177/2041731419896068
Parisi, J. R., Fernandes, K. R., Aparecida do Vale, G. C., de França Santana, A., de Almeida Cruz, M., Fortulan, C. A., Zanotto, E. D., Peitl, O., Granito, R. N., & Rennó, A. C. M. (2020). Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study. Journal of Biomaterials Applications, 35(2), 205–214. https://doi.org/10.1177/0885328220922161
Parisi, J. R., Fernandes, K. R., Avanzi, I. R., Dorileo, B. P., Santana, A. F., Andrade, A. L., Gabbai-Armelin, P. R., Fortulan, C. A., Trichês, E. S., Granito, R. N., & Renno, A. C. M. (2019). Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In vitro Biological Evaluation. Marine Biotechnology, 21(1), 30–37. https://doi.org/10.1007/s10126-018-9855-z
Parizi, A. M., Oryan, A., Shafiei-Sarvestani, Z., & Bigham-Sadegh, A. (2013). Effectiveness of synthetic hydroxyapatite versus Persian Gulf coral in an animal model of long bone defect reconstruction. Journal of Orthopaedics and Traumatology, 14(4), 259–268. https://doi.org/10.1007/s10195-013-0261-z
Patel, A., Zaky, S. H., Schoedel, K., Li, H., Sant, V., Beniash, E., Sfeir, C., Stolz, D. B., & Sant, S. (2020). Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration. Acta Biomaterialia, 112, 262–273. https://doi.org/10.1016/j.actbio.2020.05.034
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.
Pozzolini, M., Scarfì, S., Gallus, L., Castellano, M., Vicini, S., Cortese, K., Gagliani, M., Bertolino, M., Costa, G., & Giovine, M. (2018). Production, Characterization and Biocompatibility Evaluation of Collagen Membranes Derived from Marine Sponge Chondrosia reniformis Nardo, 1847. Marine Drugs, 16(4), 111. https://doi.org/10.3390/md16040111
Renno, A. C. M., Bossini, P. S., Crovace, M. C., Rodrigues, A. C. M., Zanotto, E. D., & Parizotto, N. A. (2013). Characterization and In vivo Biological Performance of Biosilicate. BioMed Research International, 2013, 1–7. https://doi.org/10.1155/2013/141427
Rezvani Ghomi, E., Nourbakhsh, N., Akbari Kenari, M., Zare, M., & Ramakrishna, S. (2021). Collagen‐based biomaterials for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(12), 1986–1999. https://doi.org/10.1002/jbm.b.34881
Rodríguez, F., Morán, L., González, G., Troncoso, E., & Zúñiga, R. N. (2017). Collagen extraction from mussel byssus: a new marine collagen source with physicochemical properties of industrial interest. Journal of Food Science and Technology, 54(5), 1228–1238. https://doi.org/10.1007/s13197-017-2566-z
Ruh, A. C., Frigo, L., Cavalcanti, M. F. X. B., Svidnicki, P., Vicari, V. N., Lopes-Martins, R. A. B., Leal Junior, E. C. P., De Isla, N., Diomede, F., Trubiani, O., & Favero, G. M. (2018). Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers. Lasers in Medical Science, 33(1), 165–171. https://doi.org/10.1007/s10103-017-2384-6
Salvatore, L., Gallo, N., Natali, M. L., Terzi, A., Sannino, A., & Madaghiele, M. (2021). Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.644595
Santana, A. de F., Avanzi, I. R., Parisi, J. R., Cruz, M. A., Vale, G. C. A. do, Araújo, T. A. T. de, Cláudio, S. R., Ribeiro, D. A., Granito, R. N., & Renno, A. C. M. (2021). In vitro and in vivo genotoxicity and cytotoxicity analysis of protein extract from Aplysina fulva sponges. Acta Scientiarum. Biological Sciences, 43, e57856. https://doi.org/10.4025/actascibiolsci.v43i1.57856
Silva, G. S., Krpata, D. M., Gao, Y., Criss, C. N., Anderson, J. M., Soltanian, H. T., Rosen, M. J., & Novitsky, Y. W. (2014). Lack of identifiable biologic behavior in a series of porcine mesh explants. Surgery, 156(1), 183–189. https://doi.org/10.1016/j.surg.2014.03.011
Silva, T., Moreira-Silva, J., Marques, A., Domingues, A., Bayon, Y., & Reis, R. (2014). Marine Origin Collagens and Its Potential Applications. Marine Drugs, 12(12), 5881–5901. https://doi.org/10.3390/md12125881
Silvipriya, K., Kumar, K., Bhat, A., Kumar, B., John, A., & Lakshmanan, P. (2015). Collagen: Animal Sources and Biomedical Application. Journal of Applied Pharmaceutical Science, 123–127. https://doi.org/10.7324/JAPS.2015.50322
Swatschek, D., Schatton, W., Kellermann, J., Müller, W. E. G., & Kreuter, J. (2002). Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. European Journal of Pharmaceutics and Biopharmaceutics, 53(1), 107–113. https://doi.org/10.1016/S0939-6411(01)00192-8
Tassara, E., Oliveri, C., Vezzulli, L., Cerrano, C., Xiao, L., Giovine, M., & Pozzolini, M. (2023). 2D Collagen Membranes from Marine Demosponge Chondrosia reniformis (Nardo, 1847) for Skin-Regenerative Medicine Applications: An In vitro Evaluation. Marine Drugs, 21(8), 428. https://doi.org/10.3390/md21080428
Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., & Cheng, L. (2007). Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials, 28(22), 3338–3348. https://doi.org/10.1016/j.biomaterials.2007.04.014
Wubneh, A., Tsekoura, E. K., Ayranci, C., & Uludağ, H. (2018). Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia, 80, 1–30. https://doi.org/10.1016/j.actbio.2018.09.031
Zheng, M., Wang, X., Chen, Y., Yue, O., Bai, Z., Cui, B., Jiang, H., & Liu, X. (2023). A Review of Recent Progress on Collagen‐Based Biomaterials. Advanced Healthcare Materials, 12(16). https://doi.org/10.1002/adhm.202202042
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ana Cláudia Rennó; Mirian Bonifacio; Gustavo Oliva Amaral; Giovanna do Espirito Santo; Beatriz Louise Mendes Viegas; Homero Garcia-Motta; Márcio Reis Custódio; Daniel Araki Ribeiro; Renata Neves Granito

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.