Caracterización y desempeño biológico in vivo del colágeno de esponjas marinas: Una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v14i3.48410

Palabras clave:

Compuestos Bioactivos, Colágeno, Esponjas Marinas, Esponjina.

Resumen

El uso de biomateriales a base de colágeno en la ingeniería de tejidos ha aumentado en las últimas décadas debido a las ventajas del colágeno, incluyendo su biocompatibilidad, biodegradación controlada y soporte para la adhesión y diferenciación celular. Las fuentes tradicionales de colágeno, a menudo de origen bovino o porcino, presentan desafíos como riesgos zoonóticos, reacciones inmunogénicas y preocupaciones éticas. Para superar estas limitaciones, los investigadores están explorando fuentes innovadoras de colágeno, como las esponjas marinas. El colágeno de las esponjas marinas, conocido como esponjina (SPG) o colágeno tipo esponjina (SC), exhibe biocompatibilidad y se considera un componente natural para la regeneración tisular, actuando como una matriz de adhesión celular. Nuestro grupo ha llevado a cabo experimentos durante varios años para extraer SPG de esponjas, evaluar su biocompatibilidad y citotoxicidad, así como sus efectos biológicos in vitro e in vivo. Esta investigación tiene como objetivo revisar los datos obtenidos en nuestra investigación sobre la caracterización y el desempeño biológico in vivo del colágeno-like de esponjas marinas. Estudios in vitro e in vivo sugieren que la SPG promueve el crecimiento celular y la regeneración tisular, particularmente en fibroblastos y osteoblastos, facilitando la integración del tejido. Además, la combinación de SPG con cerámicas como la hidroxiapatita y los vidrios bioactivos ha demostrado propiedades biológicas beneficiosas. A pesar de los desafíos éticos y regulatorios, el colágeno de esponjas marinas muestra un gran potencial como biomaterial natural que podría mejorar la calidad de vida de los pacientes, especialmente en el tratamiento de lesiones óseas. Esta revisión resalta el uso innovador de las esponjas marinas y sus componentes a base de colágeno en la ingeniería de tejidos, enfatizando su potencial como una alternativa prometedora para el tratamiento de lesiones óseas. Además, subraya la necesidad de realizar más investigaciones para aprovechar completamente este recurso biotecnológico natural.

Referencias

Ali, S. S., & Dubey, V. K. (2010). Exploiting the Potential of Collagen as a Natural Biomaterial in Drug Delivery Studies on Protein Folding and Misfolding-effect of selected biomolecules View project microbial diversity of Hot Springs of Sikkim India View project. In Article in Journal of Proteins and Proteomics. https://www.researchgate.net/publication/256534577

Araujo, T. A. T., Almeida, M. C., Avanzi, I., Parisi, J., Simon Sales, A. F., Na, Y., & Renno, A. (2021). Collagen membranes for skin wound repair: A systematic review. Journal of Biomaterials Applications, 36(1), 95–112. https://doi.org/10.1177/0885328220980278

Araújo, T. A. T., de Souza, A., Santana, A. F., Braga, A. R. C., Custódio, M. R., Simões, F. R., Araújo, G. M., Miranda, A., Alves, F., Granito, R. N., Yu, N., & Renno, A. C. M. (2021). Comparison of Different Methods for Spongin-like Collagen Extraction from Marine Sponges (Chondrilla caribensis and Aplysina fulva): Physicochemical Properties and In vitro Biological Analysis. Membranes, 11(7), 522. https://doi.org/10.3390/membranes11070522

Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annual Review of Chemical and Biomolecular Engineering, 2(1), 403–430. https://doi.org/10.1146/annurev-chembioeng-061010-114257

Chilakamarthi, U., Kandhadi, J., Gunda, S., Thatipalli, A. R., Kumar Jerald, M., Lingamallu, G., Reddy, R. C., Chaudhuri, A., & Pande, G. (2014). Synthesis and functional characterization of a fluorescent peptide probe for non invasive imaging of collagen in live tissues. Experimental Cell Research, 327(1), 91–101. https://doi.org/10.1016/j.yexcr.2014.05.005

Cruz, M. A., Fernandes, K. R., Parisi, J. R., Vale, G. C. A., Junior, S. R. A., Freitas, F. R., Sales, A. F. S., Fortulan, C. A., Peitl, O., Zanotto, E., Granito, R. N., Ribeiro, A. M., & Renno, A. C. M. (2020). Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects. Journal of Bone and Mineral Metabolism, 38(5), 639–647. https://doi.org/10.1007/s00774-020-01102-4

Davison-Kotler, E., Marshall, W. S., & García-Gareta, E. (2019). Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering, 6(3), 56. https://doi.org/10.3390/bioengineering6030056

Fernandes, A. P., Junqueira, M. de A., Marques, N. C. T., Machado, M. A. A. M., Santos, C. F., Oliveira, T. M., & Sakai, V. T. (2016). Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. Journal of Applied Oral Science, 24(4), 332–337. https://doi.org/10.1590/1678-775720150275

Fernandes, K. R., Parisi, J. R., Cruz, M. de A., Gabbai-Armelin, P. R., Araújo, T. A. T. de, Santana, A. de F., Avanzi, I. R., Silva-Freitas, F. R., Ribeiro, A. M., Vale, G. C. A. do, Fortulan, C. A., Granito, R. N., & Renno, A. C. M. (2021). Characterization and Biological Performance of Marine Sponge Collagen. Brazilian Archives of Biology and Technology, 64. https://doi.org/10.1590/1678-4324-2021200592

Fernandes, K. R., Parisi, J. R., Magri, A. M. P., Kido, H. W., Gabbai-Armelin, P. R., Fortulan, C. A., Zanotto, E. D., Peitl, O., Granito, R. N., & Renno, A. C. M. (2019). Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study. Journal of Materials Science: Materials in Medicine, 30(6), 64. https://doi.org/10.1007/s10856-019-6266-2

Gil, A. C. (2017). Como elaborar projetos de pesquisa. (6ed.). Editora Atlas.

Freitas, L. F., & Hamblin, M. R. (2016). Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 348–364. https://doi.org/10.1109/JSTQE.2016.2561201

Granito, R. N., Ribeiro, D. A., Rennó, A. C. M., Ravagnani, C., Bossini, P. S., Peitl-Filho, O., Zanotto, E. D., Parizotto, N. A., & Oishi, J. (2009). Effects of biosilicate and bioglass 45S5 on tibial bone consolidation on rats: a biomechanical and a histological study. Journal of Materials Science: Materials in Medicine, 20(12), 2521–2526. https://doi.org/10.1007/s10856-009-3824-z

Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 4(3), 337–361. https://doi.org/10.3934/BIOPHY.2017.3.337

Hernández‐Rangel, A., & Martin‐Martinez, E. S. (2021). Collagen based electrospun materials for skin wounds treatment. Journal of Biomedical Materials Research Part A, 109(9), 1751–1764. https://doi.org/10.1002/jbm.a.37154

Ho-Shui-Ling, A., Bolander, J., Rustom, L. E., Johnson, A. W., Luyten, F. P., & Picart, C. (2018). Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 180, 143–162. https://doi.org/10.1016/j.biomaterials.2018.07.017

Khadra, M., Lyngstadaas, S. P., Haanæs, H. R., & Mustafa, K. (2005). Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials, 26(17), 3503–3509. https://doi.org/10.1016/j.biomaterials.2004.09.033

Li, Y., Liu, Y., Li, R., Bai, H., Zhu, Z., Zhu, L., Zhu, C., Che, Z., Liu, H., Wang, J., & Huang, L. (2021). Collagen-based biomaterials for bone tissue engineering. Materials & Design, 210, 110049. https://doi.org/10.1016/j.matdes.2021.110049

Lima, F. M., Bjordal, J. M., Albertini, R., Santos, F. V., & Aimbire, F. (2010). Low-level laser therapy (LLLT) attenuates RhoA mRNA expression in the rat bronchi smooth muscle exposed to tumor necrosis factor-α. Lasers in Medical Science, 25(5), 661–668. https://doi.org/10.1007/s10103-010-0766-0~

Lin, Z., Solomon, K. L., Zhang, X., Pavlos, N. J., Abel, T., Willers, C., Dai, K., Xu, J., Zheng, Q., & Zheng, M. (2011). In vitro Evaluation of Natural Marine Sponge Collagen as a Scaffold for Bone Tissue Engineering. International Journal of Biological Sciences, 7(7), 968–977. https://doi.org/10.7150/ijbs.7.968

Liu, S., Lau, C.-S., Liang, K., Wen, F., & Teoh, S. H. (2022). Marine collagen scaffolds in tissue engineering. Current Opinion in Biotechnology, 74, 92–103. https://doi.org/10.1016/j.copbio.2021.10.011

Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A., & Laurencin, C. T. (2020). Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 226, 119536. https://doi.org/10.1016/j.biomaterials.2019.119536

Panagiotis Berillis. (2015). Marine Collagen: Extraction and Applications. www.smgebooks.com

Pang, K.-M., Lee, J.-K., Seo, Y.-K., Kim, S.-M., Kim, M.-J., & Lee, J.-H. (2015). Biologic properties of nano-hydroxyapatite: An in vivo study of calvarial defects, ectopic bone formation and bone implantation. Bio-Medical Materials and Engineering, 25(1), 25–38. https://doi.org/10.3233/BME-141244

Parisi, C., Salvatore, L., Veschini, L., Serra, M. P., Hobbs, C., Madaghiele, M., Sannino, A., & Di Silvio, L. (2020). Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. Journal of Tissue Engineering, 11, 204173141989606. https://doi.org/10.1177/2041731419896068

Parisi, J. R., Fernandes, K. R., Aparecida do Vale, G. C., de França Santana, A., de Almeida Cruz, M., Fortulan, C. A., Zanotto, E. D., Peitl, O., Granito, R. N., & Rennó, A. C. M. (2020). Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study. Journal of Biomaterials Applications, 35(2), 205–214. https://doi.org/10.1177/0885328220922161

Parisi, J. R., Fernandes, K. R., Avanzi, I. R., Dorileo, B. P., Santana, A. F., Andrade, A. L., Gabbai-Armelin, P. R., Fortulan, C. A., Trichês, E. S., Granito, R. N., & Renno, A. C. M. (2019). Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In vitro Biological Evaluation. Marine Biotechnology, 21(1), 30–37. https://doi.org/10.1007/s10126-018-9855-z

Parizi, A. M., Oryan, A., Shafiei-Sarvestani, Z., & Bigham-Sadegh, A. (2013). Effectiveness of synthetic hydroxyapatite versus Persian Gulf coral in an animal model of long bone defect reconstruction. Journal of Orthopaedics and Traumatology, 14(4), 259–268. https://doi.org/10.1007/s10195-013-0261-z

Patel, A., Zaky, S. H., Schoedel, K., Li, H., Sant, V., Beniash, E., Sfeir, C., Stolz, D. B., & Sant, S. (2020). Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration. Acta Biomaterialia, 112, 262–273. https://doi.org/10.1016/j.actbio.2020.05.034

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.

Pozzolini, M., Scarfì, S., Gallus, L., Castellano, M., Vicini, S., Cortese, K., Gagliani, M., Bertolino, M., Costa, G., & Giovine, M. (2018). Production, Characterization and Biocompatibility Evaluation of Collagen Membranes Derived from Marine Sponge Chondrosia reniformis Nardo, 1847. Marine Drugs, 16(4), 111. https://doi.org/10.3390/md16040111

Renno, A. C. M., Bossini, P. S., Crovace, M. C., Rodrigues, A. C. M., Zanotto, E. D., & Parizotto, N. A. (2013). Characterization and In vivo Biological Performance of Biosilicate. BioMed Research International, 2013, 1–7. https://doi.org/10.1155/2013/141427

Rezvani Ghomi, E., Nourbakhsh, N., Akbari Kenari, M., Zare, M., & Ramakrishna, S. (2021). Collagen‐based biomaterials for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(12), 1986–1999. https://doi.org/10.1002/jbm.b.34881

Rodríguez, F., Morán, L., González, G., Troncoso, E., & Zúñiga, R. N. (2017). Collagen extraction from mussel byssus: a new marine collagen source with physicochemical properties of industrial interest. Journal of Food Science and Technology, 54(5), 1228–1238. https://doi.org/10.1007/s13197-017-2566-z

Ruh, A. C., Frigo, L., Cavalcanti, M. F. X. B., Svidnicki, P., Vicari, V. N., Lopes-Martins, R. A. B., Leal Junior, E. C. P., De Isla, N., Diomede, F., Trubiani, O., & Favero, G. M. (2018). Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers. Lasers in Medical Science, 33(1), 165–171. https://doi.org/10.1007/s10103-017-2384-6

Salvatore, L., Gallo, N., Natali, M. L., Terzi, A., Sannino, A., & Madaghiele, M. (2021). Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.644595

Santana, A. de F., Avanzi, I. R., Parisi, J. R., Cruz, M. A., Vale, G. C. A. do, Araújo, T. A. T. de, Cláudio, S. R., Ribeiro, D. A., Granito, R. N., & Renno, A. C. M. (2021). In vitro and in vivo genotoxicity and cytotoxicity analysis of protein extract from Aplysina fulva sponges. Acta Scientiarum. Biological Sciences, 43, e57856. https://doi.org/10.4025/actascibiolsci.v43i1.57856

Silva, G. S., Krpata, D. M., Gao, Y., Criss, C. N., Anderson, J. M., Soltanian, H. T., Rosen, M. J., & Novitsky, Y. W. (2014). Lack of identifiable biologic behavior in a series of porcine mesh explants. Surgery, 156(1), 183–189. https://doi.org/10.1016/j.surg.2014.03.011

Silva, T., Moreira-Silva, J., Marques, A., Domingues, A., Bayon, Y., & Reis, R. (2014). Marine Origin Collagens and Its Potential Applications. Marine Drugs, 12(12), 5881–5901. https://doi.org/10.3390/md12125881

Silvipriya, K., Kumar, K., Bhat, A., Kumar, B., John, A., & Lakshmanan, P. (2015). Collagen: Animal Sources and Biomedical Application. Journal of Applied Pharmaceutical Science, 123–127. https://doi.org/10.7324/JAPS.2015.50322

Swatschek, D., Schatton, W., Kellermann, J., Müller, W. E. G., & Kreuter, J. (2002). Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. European Journal of Pharmaceutics and Biopharmaceutics, 53(1), 107–113. https://doi.org/10.1016/S0939-6411(01)00192-8

Tassara, E., Oliveri, C., Vezzulli, L., Cerrano, C., Xiao, L., Giovine, M., & Pozzolini, M. (2023). 2D Collagen Membranes from Marine Demosponge Chondrosia reniformis (Nardo, 1847) for Skin-Regenerative Medicine Applications: An In vitro Evaluation. Marine Drugs, 21(8), 428. https://doi.org/10.3390/md21080428

Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., & Cheng, L. (2007). Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials, 28(22), 3338–3348. https://doi.org/10.1016/j.biomaterials.2007.04.014

Wubneh, A., Tsekoura, E. K., Ayranci, C., & Uludağ, H. (2018). Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia, 80, 1–30. https://doi.org/10.1016/j.actbio.2018.09.031

Zheng, M., Wang, X., Chen, Y., Yue, O., Bai, Z., Cui, B., Jiang, H., & Liu, X. (2023). A Review of Recent Progress on Collagen‐Based Biomaterials. Advanced Healthcare Materials, 12(16). https://doi.org/10.1002/adhm.202202042

Descargas

Publicado

2025-03-22

Número

Sección

Ciencias Agrarias y Biológicas

Cómo citar

RENNÓ, Ana Cláudia; BONIFACIO, Mirian; AMARAL, Gustavo Oliva; SANTO, Giovanna do Espirito; VIEGAS, Beatriz Louise Mendes; GARCIA-MOTTA, Homero; CUSTÓDIO, Márcio Reis; RIBEIRO, Daniel Araki; GRANITO, Renata Neves. Caracterización y desempeño biológico in vivo del colágeno de esponjas marinas: Una revisión. Research, Society and Development, [S. l.], v. 14, n. 3, p. e8114348410, 2025. DOI: 10.33448/rsd-v14i3.48410. Disponível em: https://ojs34.rsdjournal.org/index.php/rsd/article/view/48410. Acesso em: 16 jul. 2025.