Caracterização e desempenho biológico in vivo do colágeno de esponjas marinhas: Uma revisão
DOI:
https://doi.org/10.33448/rsd-v14i3.48410Palavras-chave:
Compostos Bioativos, Colágeno, Esponjas Marinhas, Espongina.Resumo
O uso de biomateriais à base de colágeno na engenharia de tecidos tem aumentado nas últimas décadas devido às vantagens do colágeno, incluindo biocompatibilidade, biodegradação controlada e suporte à adesão e diferenciação celular. As fontes tradicionais de colágeno, frequentemente de origem bovina ou suína, apresentam desafios como riscos zoonóticos, reações imunogênicas e questões éticas. Para superar essas limitações, pesquisadores estão explorando fontes inovadoras de colágeno, como as esponjas marinhas. O colágeno das esponjas marinhas, conhecido como espongina (SPG) ou colágeno tipo espongina (SC), apresenta biocompatibilidade e é considerado um componente natural para a regeneração tecidual, atuando como uma matriz de adesão celular. Nosso grupo conduziu experimentos ao longo de vários anos para extrair SPG de esponjas, avaliar sua biocompatibilidade e citotoxicidade, bem como seus efeitos biológicos in vitro e in vivo. Esta pesquisa tem como objetivo revisar os dados obtidos em nossa pesquisa sobre a caracterização e o desempenho biológico in vivo de colágeno de esponjas marinhas. Estudos in vitro e in vivo sugerem que a SPG promove o crescimento celular e a regeneração tecidual, particularmente em fibroblastos e osteoblastos, facilitando a integração dos tecidos. Além disso, a combinação de SPG com cerâmicas como a hidroxiapatita e vidros bioativos demonstrou propriedades biológicas benéficas. Apesar dos desafios éticos e regulatórios, o colágeno de esponjas marinhas se mostra promissor como um biomaterial natural que pode melhorar a qualidade de vida dos pacientes, especialmente no tratamento de lesões ósseas. Esta revisão destaca o uso inovador de esponjas marinhas e seus componentes à base de colágeno na engenharia de tecidos, enfatizando seu potencial como uma alternativa promissora para o tratamento de lesões ósseas. Além disso, ressalta a necessidade de mais pesquisas para explorar plenamente esse recurso biotecnológico natural.
Referências
Ali, S. S., & Dubey, V. K. (2010). Exploiting the Potential of Collagen as a Natural Biomaterial in Drug Delivery Studies on Protein Folding and Misfolding-effect of selected biomolecules View project microbial diversity of Hot Springs of Sikkim India View project. In Article in Journal of Proteins and Proteomics. https://www.researchgate.net/publication/256534577
Araujo, T. A. T., Almeida, M. C., Avanzi, I., Parisi, J., Simon Sales, A. F., Na, Y., & Renno, A. (2021). Collagen membranes for skin wound repair: A systematic review. Journal of Biomaterials Applications, 36(1), 95–112. https://doi.org/10.1177/0885328220980278
Araújo, T. A. T., de Souza, A., Santana, A. F., Braga, A. R. C., Custódio, M. R., Simões, F. R., Araújo, G. M., Miranda, A., Alves, F., Granito, R. N., Yu, N., & Renno, A. C. M. (2021). Comparison of Different Methods for Spongin-like Collagen Extraction from Marine Sponges (Chondrilla caribensis and Aplysina fulva): Physicochemical Properties and In vitro Biological Analysis. Membranes, 11(7), 522. https://doi.org/10.3390/membranes11070522
Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annual Review of Chemical and Biomolecular Engineering, 2(1), 403–430. https://doi.org/10.1146/annurev-chembioeng-061010-114257
Chilakamarthi, U., Kandhadi, J., Gunda, S., Thatipalli, A. R., Kumar Jerald, M., Lingamallu, G., Reddy, R. C., Chaudhuri, A., & Pande, G. (2014). Synthesis and functional characterization of a fluorescent peptide probe for non invasive imaging of collagen in live tissues. Experimental Cell Research, 327(1), 91–101. https://doi.org/10.1016/j.yexcr.2014.05.005
Cruz, M. A., Fernandes, K. R., Parisi, J. R., Vale, G. C. A., Junior, S. R. A., Freitas, F. R., Sales, A. F. S., Fortulan, C. A., Peitl, O., Zanotto, E., Granito, R. N., Ribeiro, A. M., & Renno, A. C. M. (2020). Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects. Journal of Bone and Mineral Metabolism, 38(5), 639–647. https://doi.org/10.1007/s00774-020-01102-4
Davison-Kotler, E., Marshall, W. S., & García-Gareta, E. (2019). Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering, 6(3), 56. https://doi.org/10.3390/bioengineering6030056
Fernandes, A. P., Junqueira, M. de A., Marques, N. C. T., Machado, M. A. A. M., Santos, C. F., Oliveira, T. M., & Sakai, V. T. (2016). Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. Journal of Applied Oral Science, 24(4), 332–337. https://doi.org/10.1590/1678-775720150275
Fernandes, K. R., Parisi, J. R., Cruz, M. de A., Gabbai-Armelin, P. R., Araújo, T. A. T. de, Santana, A. de F., Avanzi, I. R., Silva-Freitas, F. R., Ribeiro, A. M., Vale, G. C. A. do, Fortulan, C. A., Granito, R. N., & Renno, A. C. M. (2021). Characterization and Biological Performance of Marine Sponge Collagen. Brazilian Archives of Biology and Technology, 64. https://doi.org/10.1590/1678-4324-2021200592
Fernandes, K. R., Parisi, J. R., Magri, A. M. P., Kido, H. W., Gabbai-Armelin, P. R., Fortulan, C. A., Zanotto, E. D., Peitl, O., Granito, R. N., & Renno, A. C. M. (2019). Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study. Journal of Materials Science: Materials in Medicine, 30(6), 64. https://doi.org/10.1007/s10856-019-6266-2
Gil, A. C. (2017). Como elaborar projetos de pesquisa. (6ed.). Editora Atlas.
Freitas, L. F., & Hamblin, M. R. (2016). Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 348–364. https://doi.org/10.1109/JSTQE.2016.2561201
Granito, R. N., Ribeiro, D. A., Rennó, A. C. M., Ravagnani, C., Bossini, P. S., Peitl-Filho, O., Zanotto, E. D., Parizotto, N. A., & Oishi, J. (2009). Effects of biosilicate and bioglass 45S5 on tibial bone consolidation on rats: a biomechanical and a histological study. Journal of Materials Science: Materials in Medicine, 20(12), 2521–2526. https://doi.org/10.1007/s10856-009-3824-z
Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 4(3), 337–361. https://doi.org/10.3934/BIOPHY.2017.3.337
Hernández‐Rangel, A., & Martin‐Martinez, E. S. (2021). Collagen based electrospun materials for skin wounds treatment. Journal of Biomedical Materials Research Part A, 109(9), 1751–1764. https://doi.org/10.1002/jbm.a.37154
Ho-Shui-Ling, A., Bolander, J., Rustom, L. E., Johnson, A. W., Luyten, F. P., & Picart, C. (2018). Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 180, 143–162. https://doi.org/10.1016/j.biomaterials.2018.07.017
Khadra, M., Lyngstadaas, S. P., Haanæs, H. R., & Mustafa, K. (2005). Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials, 26(17), 3503–3509. https://doi.org/10.1016/j.biomaterials.2004.09.033
Li, Y., Liu, Y., Li, R., Bai, H., Zhu, Z., Zhu, L., Zhu, C., Che, Z., Liu, H., Wang, J., & Huang, L. (2021). Collagen-based biomaterials for bone tissue engineering. Materials & Design, 210, 110049. https://doi.org/10.1016/j.matdes.2021.110049
Lima, F. M., Bjordal, J. M., Albertini, R., Santos, F. V., & Aimbire, F. (2010). Low-level laser therapy (LLLT) attenuates RhoA mRNA expression in the rat bronchi smooth muscle exposed to tumor necrosis factor-α. Lasers in Medical Science, 25(5), 661–668. https://doi.org/10.1007/s10103-010-0766-0~
Lin, Z., Solomon, K. L., Zhang, X., Pavlos, N. J., Abel, T., Willers, C., Dai, K., Xu, J., Zheng, Q., & Zheng, M. (2011). In vitro Evaluation of Natural Marine Sponge Collagen as a Scaffold for Bone Tissue Engineering. International Journal of Biological Sciences, 7(7), 968–977. https://doi.org/10.7150/ijbs.7.968
Liu, S., Lau, C.-S., Liang, K., Wen, F., & Teoh, S. H. (2022). Marine collagen scaffolds in tissue engineering. Current Opinion in Biotechnology, 74, 92–103. https://doi.org/10.1016/j.copbio.2021.10.011
Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A., & Laurencin, C. T. (2020). Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 226, 119536. https://doi.org/10.1016/j.biomaterials.2019.119536
Panagiotis Berillis. (2015). Marine Collagen: Extraction and Applications. www.smgebooks.com
Pang, K.-M., Lee, J.-K., Seo, Y.-K., Kim, S.-M., Kim, M.-J., & Lee, J.-H. (2015). Biologic properties of nano-hydroxyapatite: An in vivo study of calvarial defects, ectopic bone formation and bone implantation. Bio-Medical Materials and Engineering, 25(1), 25–38. https://doi.org/10.3233/BME-141244
Parisi, C., Salvatore, L., Veschini, L., Serra, M. P., Hobbs, C., Madaghiele, M., Sannino, A., & Di Silvio, L. (2020). Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. Journal of Tissue Engineering, 11, 204173141989606. https://doi.org/10.1177/2041731419896068
Parisi, J. R., Fernandes, K. R., Aparecida do Vale, G. C., de França Santana, A., de Almeida Cruz, M., Fortulan, C. A., Zanotto, E. D., Peitl, O., Granito, R. N., & Rennó, A. C. M. (2020). Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study. Journal of Biomaterials Applications, 35(2), 205–214. https://doi.org/10.1177/0885328220922161
Parisi, J. R., Fernandes, K. R., Avanzi, I. R., Dorileo, B. P., Santana, A. F., Andrade, A. L., Gabbai-Armelin, P. R., Fortulan, C. A., Trichês, E. S., Granito, R. N., & Renno, A. C. M. (2019). Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In vitro Biological Evaluation. Marine Biotechnology, 21(1), 30–37. https://doi.org/10.1007/s10126-018-9855-z
Parizi, A. M., Oryan, A., Shafiei-Sarvestani, Z., & Bigham-Sadegh, A. (2013). Effectiveness of synthetic hydroxyapatite versus Persian Gulf coral in an animal model of long bone defect reconstruction. Journal of Orthopaedics and Traumatology, 14(4), 259–268. https://doi.org/10.1007/s10195-013-0261-z
Patel, A., Zaky, S. H., Schoedel, K., Li, H., Sant, V., Beniash, E., Sfeir, C., Stolz, D. B., & Sant, S. (2020). Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration. Acta Biomaterialia, 112, 262–273. https://doi.org/10.1016/j.actbio.2020.05.034
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.
Pozzolini, M., Scarfì, S., Gallus, L., Castellano, M., Vicini, S., Cortese, K., Gagliani, M., Bertolino, M., Costa, G., & Giovine, M. (2018). Production, Characterization and Biocompatibility Evaluation of Collagen Membranes Derived from Marine Sponge Chondrosia reniformis Nardo, 1847. Marine Drugs, 16(4), 111. https://doi.org/10.3390/md16040111
Renno, A. C. M., Bossini, P. S., Crovace, M. C., Rodrigues, A. C. M., Zanotto, E. D., & Parizotto, N. A. (2013). Characterization and In vivo Biological Performance of Biosilicate. BioMed Research International, 2013, 1–7. https://doi.org/10.1155/2013/141427
Rezvani Ghomi, E., Nourbakhsh, N., Akbari Kenari, M., Zare, M., & Ramakrishna, S. (2021). Collagen‐based biomaterials for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(12), 1986–1999. https://doi.org/10.1002/jbm.b.34881
Rodríguez, F., Morán, L., González, G., Troncoso, E., & Zúñiga, R. N. (2017). Collagen extraction from mussel byssus: a new marine collagen source with physicochemical properties of industrial interest. Journal of Food Science and Technology, 54(5), 1228–1238. https://doi.org/10.1007/s13197-017-2566-z
Ruh, A. C., Frigo, L., Cavalcanti, M. F. X. B., Svidnicki, P., Vicari, V. N., Lopes-Martins, R. A. B., Leal Junior, E. C. P., De Isla, N., Diomede, F., Trubiani, O., & Favero, G. M. (2018). Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers. Lasers in Medical Science, 33(1), 165–171. https://doi.org/10.1007/s10103-017-2384-6
Salvatore, L., Gallo, N., Natali, M. L., Terzi, A., Sannino, A., & Madaghiele, M. (2021). Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.644595
Santana, A. de F., Avanzi, I. R., Parisi, J. R., Cruz, M. A., Vale, G. C. A. do, Araújo, T. A. T. de, Cláudio, S. R., Ribeiro, D. A., Granito, R. N., & Renno, A. C. M. (2021). In vitro and in vivo genotoxicity and cytotoxicity analysis of protein extract from Aplysina fulva sponges. Acta Scientiarum. Biological Sciences, 43, e57856. https://doi.org/10.4025/actascibiolsci.v43i1.57856
Silva, G. S., Krpata, D. M., Gao, Y., Criss, C. N., Anderson, J. M., Soltanian, H. T., Rosen, M. J., & Novitsky, Y. W. (2014). Lack of identifiable biologic behavior in a series of porcine mesh explants. Surgery, 156(1), 183–189. https://doi.org/10.1016/j.surg.2014.03.011
Silva, T., Moreira-Silva, J., Marques, A., Domingues, A., Bayon, Y., & Reis, R. (2014). Marine Origin Collagens and Its Potential Applications. Marine Drugs, 12(12), 5881–5901. https://doi.org/10.3390/md12125881
Silvipriya, K., Kumar, K., Bhat, A., Kumar, B., John, A., & Lakshmanan, P. (2015). Collagen: Animal Sources and Biomedical Application. Journal of Applied Pharmaceutical Science, 123–127. https://doi.org/10.7324/JAPS.2015.50322
Swatschek, D., Schatton, W., Kellermann, J., Müller, W. E. G., & Kreuter, J. (2002). Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. European Journal of Pharmaceutics and Biopharmaceutics, 53(1), 107–113. https://doi.org/10.1016/S0939-6411(01)00192-8
Tassara, E., Oliveri, C., Vezzulli, L., Cerrano, C., Xiao, L., Giovine, M., & Pozzolini, M. (2023). 2D Collagen Membranes from Marine Demosponge Chondrosia reniformis (Nardo, 1847) for Skin-Regenerative Medicine Applications: An In vitro Evaluation. Marine Drugs, 21(8), 428. https://doi.org/10.3390/md21080428
Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., & Cheng, L. (2007). Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials, 28(22), 3338–3348. https://doi.org/10.1016/j.biomaterials.2007.04.014
Wubneh, A., Tsekoura, E. K., Ayranci, C., & Uludağ, H. (2018). Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia, 80, 1–30. https://doi.org/10.1016/j.actbio.2018.09.031
Zheng, M., Wang, X., Chen, Y., Yue, O., Bai, Z., Cui, B., Jiang, H., & Liu, X. (2023). A Review of Recent Progress on Collagen‐Based Biomaterials. Advanced Healthcare Materials, 12(16). https://doi.org/10.1002/adhm.202202042
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Ana Cláudia Rennó; Mirian Bonifacio; Gustavo Oliva Amaral; Giovanna do Espirito Santo; Beatriz Louise Mendes Viegas; Homero Garcia-Motta; Márcio Reis Custódio; Daniel Araki Ribeiro; Renata Neves Granito

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.